摘要
Ian Putnam利用Smale空间上的渐近等价关系定义了广群C~*-代数及其典则自同构.本文在零维Smale空间的情形下,计算此类C~*-自同构的逼近熵,证明了相应C~*-动力系统关于CNT熵和逼近熵的"变分原理"成立.由此推演出此类Smale空间上的Bowen测度诱导的C~*-代数上的态是此典则自同构的唯一平衡态.
We show that Voiculescu's topological entropy of the canonical automor- phism of the C*-algebra arising from the asymptotic equivalence on every irreducible zero-dimensional Smale space is equal to the topological entropy of the original topologi- cal dynamics. For the related C*-dynamical system, we have the "variational principle" with respect to the CNT-entropy and the topological entropy, and also show that the state defined by the Bowen measure of the Smale space is the unique equilibrium state of the canonical automorphism.
出处
《数学学报(中文版)》
CSCD
北大核心
2017年第1期149-158,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11271224
11371290
11371222)
关键词
拓扑熵
广群C*-代数
有限类子平移
变分原理
topological entropy
groupoid C*-algebra
subshift of finite type
varia-tional principle