摘要
设R是一个环,M是一个R-双边模,m和n是两个非负整数满足m+n≠0,如果δ是一个从R到M的可加映射满足对任意A∈R,(m+n)δ(A^2)=2mAδ(A)+2nδ(A)A,则称δ是一个(m,n)-Jordan导子.本文证明了,如果R是一个单位环,M是一个单位R-双边模含有一个由R中幂等元代数生成的左(右)分离集,那么,当m,n>0且m≠n时,每一个从R到M的(m,n)-Jordan导子恒等于零.还证明了,如果A和B是两个单位环,M是一个忠实的单位(A,B)-双边模(N是一个忠实的单位(B,A)-双边模),m,n>0且m≠n,U=[A N M B]是一个|mn(m-n)(m+n)|-无挠的广义矩阵环,那么每一个从U到自身的(m,n)-Jordan导子恒等于零.
Let R be a ring, U be an R-bimodule, m and n be two fixed nonnegative integers with m + n ≠ 0. If an additive mapping 5 from .R into U satisfies (m + n)5(A2) = 2mAS(A) + 2nS(A)A for every A in R, then 5 is called an (m, n)-Jordan derivation. In this paper, we prove that if .R is a unital ring and .U is a unital R- bimodule with a left (right) separating set generated algebraically by all idempotents in R, then every (m, n)-Jordan derivation from R into U is identical with zero whenever m,n 〉 0 and m ≠n; We also show that if A and B be two unitalrings, Uis a faithful unital (A,B)-bimodule N is a faithful unital (B, A)-bimodule), m, n 〉 0 and m ≠ n, U= [A,U,N ,B] is a |mn(m- n)(m + n)|-torsion-free generalized matrix ring, then every (m, n)-Jordan derivation from into itself is equal to zero.
出处
《数学学报(中文版)》
CSCD
北大核心
2017年第1期173-184,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11371136)