期刊文献+

无人软翼飞行器直线航迹跟踪鲁棒反步控制

Robust backstepping control for straight-line trajectory tracking of unmanned parafoil vehicles
原文传递
导出
摘要 为实现无人软翼飞行器的直线航迹跟踪控制,提出一种基于模拟对象的可变增益鲁棒反步控制方法.基于模拟对象方法建立软翼飞行器的航迹跟踪误差模型,并设计了可变增益反步跟踪控制器,通过合理设计增益参数,消除了部分复杂非线性项,避免了传统反步法中虚拟量高阶导数问题,简化了控制器形式,更有利于工程实现.根据Lyapunov理论设计的鲁棒反馈补偿项,在保证稳定性的同时提高了系统的鲁棒性.将控制器应用于无人软翼飞行器平面直线航迹跟踪控制中,仿真实验表明,所设计的控制器可以实现直线航迹的精确跟踪,且具有很好的鲁棒性. In order to implement straight-line trajectory tracking control for unmanned parafoil vehicles ( UPV), a variable-gain robust backstepping control method was proposed based on a simulation object. A variable-gain baekstepping tracking controller was designed against the trajectory tracking error model, and proper design of gain parameters eliminated a part of complicated nonlinear terms and avoided higher derivatives in traditional backstepping methods so as to make the controller simpler and to be beneficial to engineering realization. The robust feedback compensation term designed according to the Lyapunov theory improved the system' s robustness while ensuring its stability. In addition, the controller was applied to UPV planar straight-line trajectory tracking control. The simulation experiment illustrates the good robustness of the proposed controller and the accurate tracking ability in straight-line trajecto- ries.
出处 《工程科学学报》 EI CSCD 北大核心 2016年第12期1784-1790,共7页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(51175508) 总装院校科技创新工程资助项目(12080007)
关键词 无人飞行器 航迹 跟踪 鲁棒控制 反步 unmanned vehicles trajectories tracking robust control backstepping
  • 相关文献

参考文献4

二级参考文献42

  • 1孙多青,霍伟,杨枭.含模型不确定性移动机器人路径跟踪的分层模糊控制[J].控制理论与应用,2004,21(4):489-494. 被引量:17
  • 2马保离,霍伟.移动小车的路径跟踪与镇定[J].机器人,1995,17(6):358-362. 被引量:22
  • 3徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:52
  • 4Martinez S, BuUo E Cortes J. Motion planning and control problems for underactuated robots[J]. Advnaced Robotics, 2003, 4(2): 59-74.
  • 5Deluca A, Iannitti S. A simple STLC test for mechanical systems underactuated by one control[C]. IEEE Int Conf on Robotics and Automation. Washington DC: IEEE Press, 2002(5): 1735-1740.
  • 6Encarnacao P, Pascoal A. 3D path following for autonomous underwater vehicle[C]. Proc of the 39th IEEEConf on Decision and Control, Sydney: IEEE Press, 2000: 2977-2982.
  • 7Aicirdi M, Casalino G, Indiveri G. Closed loop control of 3D underactuated vehicles via velocity field tracking[C]. Proc of the IEEE Int Conf on Adavanced Intelligent Mechalronics. Como: IEEE Press, 2001: 355-360.
  • 8Breivik M, Fossen T I. Guidance-based path following for autonomous underwater vehicles[C]. Proc of the IEEE. Washington: IEEE Press, 2005:2807-2814.
  • 9Fossen T I. Marine control systems: Guidance, navigation, and control of ships, rigs and underwater vehicles[M]. 1st ed. Marine Cybernetics, Trondheim Norway, 2002: 88-89.
  • 10Wichlund K Y, Sordalen O J, Egeland O. Control properties of underactuated vehicles[C]. IEEE Int Conf on Robotics and Automation. Nagoya: IEEE Press, 1995, 2: 2009- 2014.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部