期刊文献+

靶向变异链球菌谷氨酸消旋酶的研究进展 被引量:1

Research progress on the targeting of glutamate racemase of Streptococcus mutans
原文传递
导出
摘要 变异链球菌是龋病发生的始动因子,与人类龋病密切相关。抑制变异链球菌致龋毒力相关的基因和酶,可影响细菌毒力因子的产生,降低细菌的致龋能力,有助于龋病的预防和治疗。谷氨酸消旋酶是一类不需辅助因子,专一催化L型和D型谷氨酸之间相互转化的酶,为细胞壁肽聚糖合成提供D-谷氨酸,是细菌生长的关键酶,目前已经成为研究和开发新型抗菌药物的新靶标。特异性靶向变异链球菌谷氨酸消旋酶,有望为龋病防治提供新的思路和方法。本文对谷氨酸消旋酶的分类、结构特征、酶抑制剂及基因遗传学等研究进展进行系统阐述,为进一步研究谷氨酸消旋酶与变异链球菌致龋毒力的关系,研发抗龋药物候选靶标提供理论基础。 Streptococcus mutans(S.mutans)is widely considered to be the major etiological factor responsible for dental caries in humans. Strategies selectively inhibiting the specific virulence factors associated with its cariogenicity are promising. Glutamate racemase (MurI) is a cofactor?independent enzyme that catalyzes the interconversion of L?glutamate to D?glutamate,one of the essential amino acids present in the peptidoglycan. As the indispensable enzyme in peptidoglycan biosynthesis,MurI has therefore been an attractive target for therapeutic interventions. In this review,the classifications, structures, inhibitors and genetic studies of MurI are systematically summarized. A comprehensive understanding of the relationship between MurI and cariogenic virulence of S.mutans can provide an important theoretical basis for potential therapeutic applications of dental caries.
出处 《中华口腔医学研究杂志(电子版)》 CAS 2016年第5期352-355,共4页 Chinese Journal of Stomatological Research(Electronic Edition)
基金 国家自然科学基金(81371132) 广东省科技计划(2013B021800138)
关键词 谷氨酸消旋酶 抑制剂 基因缺失突变 致龋毒力因子 Glutamate racemase Inhibitor Gene deletion mutation Cariogenic virulence
  • 相关文献

参考文献2

二级参考文献32

  • 1Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3): 294-303.
  • 2Claverys JP, Martin B, Havarstein LS. Competence-induced fratricide in streptococci[J]. Mol Microbiol, 2007, 64(6): 1423-1433.
  • 3Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition, localization, and mechanism[J]. FEMS Microbiol Rev, 2009, 33(3): 643-656.
  • 4Johnsborg O, Havarstein LS. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae[J]. FEMS Microbiol Rev, 2009, 33 (3): 627-642.
  • 5Johnsborg O, Eldholm V, Bjomstad ML, et al. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species[J]. Mol Microbiol, 2008, 69(1): 245-253.
  • 6Ahn S J, Wen ZT, Burne RA. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159[J]. Infect Inmmn, 2006, 74(3): 1631-1642.
  • 7Levesque CM, Mair RW, Perry JA, et al. Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties[J]. Lett Appl Microbiol, 2007, 45(4): 398-404.
  • 8Hara A, Yamada H, Sakai N, et al. Immunohistochemical demonstration of the placental form of glutathione S-transferase, a detoxifying enzyme in human gliomas[J]. Cancer, 1990, 66(12): 2563-2568.
  • 9Li YH, Lau PC, Tang N, et al. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans[J]. J Baeteriol, 2002, 184 (22): 6333-6342.
  • 10Kreth J, Hung DC, Merritt J, et al. The response regulator Come in Streptococcus mutans functions both as a transcription activator of nmtacin production and repressor of CSP biosynthesis[J]. Microbiology, 2007, 153 Pt 6: 1799-1807.

共引文献1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部