期刊文献+

具有主动腰关节的四足机器人在间歇性对角小跑步态下的姿态平衡控制 被引量:8

Posture Balance Control of the Quadruped Robot with an Active Waist Joint during Intermittent Trot Locomotion
原文传递
导出
摘要 提出一种由前轮腿模块、后轮腿模块和主动腰关节模块组成的轮腿式机器人.研究发现,拥有刚性腰关节模块的轮腿式机器人在以对角小跑步态行进的过程中处于振荡的非平衡态.为此,借鉴四足动物生物学研究成果以及基于ZMP(零力矩点)的实时性摆动补偿轨迹规划,本文利用主动腰关节模块来提高轮腿式机器人在间歇性小跑步态下的稳定性.对上述的轮腿式机器人进行运动学和动力学建模,通过仿真实验证实了添加偏航关节的规律性摆动可以大幅减少和改善机体的倾斜振荡,机体的倾斜幅度由原先的62.2 mm降至12.8 mm,明显提升了机器人在间歇性小跑步态下的运动稳定性. A wheel-legged robot is proposed, which is comprised of the front wheel-leg module, the rear wheel-leg module, and the active waist joint. The research indicates that the locomotion of the wheel-legged robot with the rigid waist joint in trot gait is unstable with violent vibration. According to the biological study in quadrupeds and ZMP (zero moment point) based real-time trajectory planning with sway compensation, a control method using the active waist joint is proposed to improve the locomotion stability in intermittent trot gait. Kinematic and dynamic models of the wheel-legged robot are developed. Experimental results show that the addition of the regular swinging function for the yaw joint can dramatically reduce the amplitude of the body vibration from 62.2 mm to 12.8 mm and remarkably improve the locomotion stability of the robot in intermittent trot gait.
出处 《机器人》 EI CSCD 北大核心 2016年第6期670-677,共8页 Robot
基金 国家自然科学基金(61375076) 江苏省"六大人才高峰"高层次人才选拔培养项目(WLW-010)
关键词 轮腿式机器人 间歇性小跑步态 偏航关节 零力矩点 步态稳定性 wheel-legged robot intermittent trot gait yaw joint zero-moment point gait stability
  • 相关文献

参考文献2

二级参考文献14

  • 1张楫,赵明国,董浩.基于圆弧模型的四足机器人步态规划[J].机器人,2006,28(5):536-539. 被引量:5
  • 2Fujita M. AIBO: Toward the era of digital creatures[J]. International Journal of Robotics Research, 2001, 20(10): 781-794.
  • 3Hengst B, Ibbotson D, Pham S B, et al. Omnidirectional locomotion for quadruped robots[M]//Lecture Notes in Artificial Intelligence, vol.2377. Berlin, Germany: Springer-Verlag, 2002: 368-373.
  • 4Kohl N, Stone E Policy gradient reinforcement learning for fast quadrupedal locomotion[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2004: 2619-2624.
  • 5Homby G S, Takamura S, Yamamoto T, et al. Autonomous evolution of dynamic gaits with two quadruped robots[J]. IEEE Transactions on Robotics, 2005, 21(3): 402-410.
  • 6Vukobratovic M, Borovac B. Zero-moment point: Thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1(1): 157-173.
  • 7Hirose S, Yoneda K, Furuya R, et al. Dynamic and static fusion control of quadruped walking vehicle[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 1989: 199-204.
  • 8Kurazume R, Yoneda K, Hirose S. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle[J]. Autonomous Robots, 2002, 12(2): 157-172.
  • 9Liu J, Veloso M. Online ZMP sampling search for biped walking planning[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2008: 185-190.
  • 10Rofer T, Laue T, Burkhard H D, et al. GermanTeam robocup 2004[EB/OL]. (2004-12-03) [2009-08-01]. http://www.germanteam.org/GT2004.pdf.

共引文献10

同被引文献87

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部