期刊文献+

基于模糊树图与DS证据理论的机器人功能模块粒度划分方法 被引量:3

Granularity Partition Method for Robot Functional Modules Based on Fuzzy Dendrogram and DS Evidence Theory
原文传递
导出
摘要 基于机器人技术中间件(RTM)提出一种功能模块粒度划分评价方法.首先,结合模糊层次分析法(FAHP)获取模块功能与结构相关性指标的综合权重,构造系统相关矩阵,通过模糊树图聚类算法得到不同粒度下的机器人系统模块划分方案;以模块独立性为原则,构建各模块划分方案的内聚度与耦合度模型,并将其视为DS(Dempster-Shafer)证据理论的两个证据源,建立多属性决策矩阵;通过区间偏好排序法对决策方案的信任区间进行排序,得到机器人系统最优模块划分方案.以机器人3维地图创建系统为例,对所提评价方法进行验证,系统实现及结果表明了该方法的有效性和可行性. A novel evaluation method of granularity partition for functional modules based on robot technology middle- ware (RTM) is proposed. Firstly, the comprehensive weights for pertinence indexes of structures and functions of modules are calculated by fuzzy analytical hierarchy process (FAHP), and correlation matrix of the system is established. A fuzzy dendrogram clustering algorithm is proposed to obtain the module partition schemes for the robot system under different granularities. To construct multi-attribute decision matrix, the models of cohesion and coupling for each scheme are struc- tured as two sources of evidences for DS (Dempster-Shafer) evidence theory based on the principle of module independence. Then the trust intervals of every decision scheme are sorted by a preference ordering method for intervals to obtain the opti- mal module partition scheme for the robot system. The evaluation method is verified by applying it to the robot 3D mapping system. The system implementation and results show that the method is effective and feasible.
出处 《机器人》 EI CSCD 北大核心 2016年第6期696-703,共8页 Robot
基金 北京工业大学智能机器人"大科研"推进计划(002000514316009) 国家自然科学基金(61175087)
关键词 模块划分 机器人技术中间件 模糊树图 DS证据理论 模糊层次分析法 module partition RTM (robot technology middleware) fuzzy dendrogram DS evidence theory FAHP (fuzzy analytical hierarchy process)
  • 相关文献

参考文献7

二级参考文献98

  • 1陈衍泰,陈国宏,李美娟.应用合作博弈确定组合评价权重系数的方法研究[J].中国管理科学,2005,13(3):89-94. 被引量:31
  • 2Gu P, Sos,ale S. Product modularization for life cycle engineering[J]. Robotics and Computer Integrated Manufacturing, 1999, 15(5): 387-401.
  • 3Tseng H E, Chang C C, Li J D. Modular design to support green life-cycle engineering[J ]. Expert Systems with Applications, 2008, 34(5) : 2 524-2 537.
  • 4Tsai Y T, Wang K S. The development of modular-based design in considering technology complexity[J]. European Journal of Operational Research, 1999, 119(3) : 692-703.
  • 5Stone R B, McAdams D A, Kayyalethekkel V J. A product architecture-based conceptual DFA technique [J ]. Design Studies, 2004, 25(3): 301-325.
  • 6Stone R B, Wood K L, Crawford R H. A heuristic method for identifying modules for product architectures[J]. Design Studies, 2000, 21(1): 5-31.
  • 7Whitesides G M, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421.
  • 8Groβ R, Dorigo M. Self-assembly at the macroscopic scale[J]. Proceedings of the IEEE, 2008, 96(9): 1490-1508.
  • 9Delrobaei M, Mclsaac K A. Connection mechanism for autonomous self-assembly in mobile robots[J]. IEEE Transactions on Robotics, 2009, 25(6): 1413-1419.
  • 10Yim M, Shen W M, Salemi B, et al. Modular self-reconfigurable robot systems - Challenges and opportunities for the future[J]. IEEE Robotics & Automation Magazine, 2007, 14(1): 43-52.

共引文献52

同被引文献18

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部