期刊文献+

一类基于比率和带收获率的捕食反应扩散模型的全局渐近稳定性 被引量:1

Global Asymptotic Stability of a Predator-Prey Reaction Diffusion Model with Ratio-dependent and Harvesting Rate
下载PDF
导出
摘要 讨论一类在齐次Neumann边界条件下具有扩散项和按比率收获的捕食模型解的全局渐近稳定性,并利用改进的迭代方法和比较原理讨论其非负半平凡解和正平衡解的全局渐近稳定性,得到了一些充分条件. In this paper, we consider the global asymptotic stab ility of solutions of a predator-prey reaction-diffusion model with ratio-dependent and harvesting function response under homogeneous Neumann boundary condition. Via iteration method and the parabolic equation comparison principle, the global asymptotical stability of the nonnegative semi-trivial solutions and positive steady-state solution are discussed, and some sufficient conditions are given.
作者 孟义杰
出处 《湖北文理学院学报》 2016年第11期5-9,共5页 Journal of Hubei University of Arts and Science
基金 国家自然科学青年基金(11501186)
关键词 捕食模型 齐次Neumann边界 非负半平凡解 平衡解 全局渐近稳定性 Predator-prey model Homogeneous Neumann boundary Nonnegative semi-trivial solutions Steady-state solution Global asymptotical stability
  • 相关文献

参考文献2

二级参考文献30

  • 1钟承奎,范先令,陈文yuan.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.
  • 2叶其孝,李正元.反应扩散方程[M].北京:科学出版社,1994.
  • 3LIU Wei, FU Chaojin. CHEN Boshan. Hopf Bifurcation and Center Stability for a Predator-prey Biological EconomicModel with Prey Harvesting [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 ( 10):3989-3998..
  • 4LIAN Fuyun,XU Yuantong. Hopf Bifurcation Analyvsis of a Predator-prey System with Holling Type IV :Functional Re-sponse and Time Delay [J]. Applied Mathematics and Computation,2009,215(4) : 1484-1495.
  • 5LI Bo,WANG Mingxin. Stationary Patterns of the Stage-structured Predator-prey Model with Diffusion and Cross-diffu-sion [J]. Mathematical and Computer Modelling.2011,54(5/6) : 1380-1393.
  • 6CHEN L J ,CHEN F D. Qualitative Analysis of a Predator-prey Model with Holling Type fl :Functional Response Incor-porating a Constant Prey Refuge [J]. Nonliear Analysis:RWA.2010,11(1) .246-252.
  • 7LIU Guirong, YAN Jurang. Positive Periodic Solutions for Neutral Delay Ratio-dependent Predator-prey Model withHolling Type ID :Functional Response [J]. Applied Mathematics and Computation,2011 .218(8) :4341-4348.
  • 8DUQUE C,KISS K, LIZ AN A M. On the Dynamics of an N-dimensional Ratio-dependent Predator-prey System with Dif-fusion [J]. Applied Mathematics and Computation,2009,208(1) :98-105.
  • 9LI Yanling. WU Jianhua. Convergence of Solution for Volterra-Lotka Prey-predator Systems with Time Delays [J]. Ap-plied Mathematics Letters,2009,22(2) : 170-174.
  • 10CHAKRABORTY K,JANA S,KAR T K. Global Dynamics and Bifurcation in a Stage-structured Prey-predator FisheryModel with Harvesting [J]. Applied Mathematics and Computation,2012,218(18) : 9271-9290.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部