期刊文献+

分位数控制图中分位数的估计与选择的研究与改进

Improved Design on Nonparametric Quantile-based Control Charts
原文传递
导出
摘要 针对分位数控制图应用中分位点的估计和分位点个数的选取进行了研究和改进,引入非参数平稳估计并进行窗宽调整、研究适合小样本条件分布未知时分位数点的有效估计;此外,提出构造分位数控制图新的准则,选取最优的分位点和分位点个数构造卡方检验统计量。通过模拟计算和比较,改进的分位数控制图方案更加有效和灵敏.最后通过MC模拟编制小样本情形的控制限表,为分位数控制图的应用提供参考依据。 It is about investigating and improving the design of quantile-based control charts. Firstly, it is a smooth nonparametric estimator of a quantile function that is introduced and the window width should be adjusted to obtain the effective estimation of quantiles in the case of small sample size when the distribution is free. Secondly, it is a new criterion of test power that is proposed in order to make optimal choice of the quantiles. Simulation results confirm the high efficiency of the improved nonparametric quantile-based control chart. To provide guidance for application, the control limits table also is calculated in the small sample size by Monte Carlo simulation.
出处 《数理统计与管理》 CSSCI 北大核心 2017年第1期103-112,共10页 Journal of Applied Statistics and Management
基金 国家自然科学基金(11301323)
关键词 分位数控制图 非参数估计 厚尾分布 quantile-based control charts, nonparametric estimation, heavy-tailed distribution
  • 相关文献

参考文献2

二级参考文献65

  • 1Page E S. Continuous inspection schemes [J]. Biometrika, 1954, 41: 100-115.
  • 2Robert S W. Control chart test based on geometric moving averages [J]. Technometrics, 1959, 1: 239-250.
  • 3Montgomery D C. Introduction to Statistical Quality Control (4th ed) [M]. New York: John Wiley & Sons, 2004.
  • 4Hawkins D M, and Olwell D H. Cumulative Sum Charts and Charting for Quality Improvement [M]. New York: Springer-Verlag, 1998.
  • 5Wetherill G B, and Brown D W. Statistical Process Control [M]. Chapman and Hall, 1991.
  • 6Brook D, and Evans D A. An approach to the probability distribution of CUSUM run length [J]. Biometrika, 1972, 59: 539-549.
  • 7Hawkins, Douglas M. Evaluation of the average run length of cumulative sum charts for an arbitrary data distribution [J]. Communication in Statistics-Simulation and Computation, 1992, 21: 1001- 1020.
  • 8Sparks R S. CUSUM charts for signalling varying locations shifts [J]. Journal of Quality Technology, 2000, 32: 157-171.
  • 9Shu L, and Jiang W. A Markov chain model for the adaptive CUSUM control chart [J]. Journal of Quality Technology, 2006, 38: 135-147.
  • 10Van Dobben de Bruyn C S. Cumulative Sum Test: Theory and Practice [M]. London: Griffin, 1968.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部