期刊文献+

多帧背景差与双门限结合的运动目标检测方法 被引量:10

Moving Target Detection Method Based on Multi-frame Background Subtraction and Doublethreshold
下载PDF
导出
摘要 为有效解决视频监控场景下运动目标快速、精确检测的问题,提出一种多帧背景差与双门限结合的运动目标检测方法.首先改进Surendra背景模型来获取干净的背景图像,根据灰度差分图像确定的两个门限值进行前景目标检测,低门限阈值用于检测出比较明显的前景目标(即粗检测),在粗检测的基础上利用高门限阈值以去除粗检测中存在的噪声目标与伪目标(即细检测),最终实现视频监控场景下运动目标的精确检测效果.针对车辆、行人等不同对象的监控场景下进行实验,验证了本文方法不仅能够有效地抑制噪声及伪目标的干扰,而且能够快速、准确地分割出前景目标. To effectively solve the problem of fast and accurate detection of moving targets in video surveillance scene,moving target detection method based on multi-frame background subtraction and double-threshold is proposed. Firstly, Surendra background model algorithm is improved to get clean background image, then foreground object is carded out by the two threshold values of gray differ- ence image,low-threshold value is used for detecting the obvious target ( i. e. , rough detection ) ; on the basis of the rough detection high-threshold value is used for removing noise target and false target ( i. e. , fine detection ). Finally, moving target is detected accu- rately in video surveillance scene. The experiment on the vehicle, pedestrian and other object shows that the method can not only sup- press the noise and interference of false target,but also can segment foreground target rapidly and accurately.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第1期179-183,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61139003 61179060 U1433112)资助
关键词 多帧背景差分 双门限 目标检测 Surendra背景模型 灰度差分图像 multi-frame background sublxaction double-threshold target detection Surendra background model gray deference image
  • 相关文献

参考文献4

二级参考文献51

  • 1魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 2SENST T, EVANGELIO R H, SIKORA T. Detecting people carrying objects based on an optical flow motion model [ C]//Proc of IEEE Workshop on Applications of Computer Vision. Washington DC : IEEE Computer Society, 2011 : 301 - 306.
  • 3WENG Mu-yun, HUANG Guo-ce, DA Xin-yu. A new interframe difference algorithm for moving target detection[ C ]//Proe of the 3rd International Congress on Image and Signal Processing: 2010: 285- 289.
  • 4MOHAMED S S, TAHIR N M, ADNAN R. Background modeling and background subtraction performance for objecl: detection [ C ]// Proc of the 6th International Colloquium on Signal Processing and Its Applications. 2010:236- 241.
  • 5STAUFFER C, GI'UMSON W E L. Learning patterns of activity using real-time tracking[ J ]. IEEE Trans on Pattern Analysis & Ma- chine Intelligence,2000,22 ( 8 ) :747- 757.
  • 6CHEN Yu-ting, CHEN Chu-song, HI.IANG Chun-rong, et al. Effi- cient hierarchical method for hackground subtraction [ J ]. Pattern Recognition ,2007,40(10) :2706-2715.
  • 7LEE S, LEE J, HAYES M H, et al. Adaptive backgroumt generation for automatic detection of initial object region in multiple color-fiher aperture camera-based surveillance system[ J ]. IEEE Trans on Con- sumer Electronics,2012,58( I ) : 104- 110.
  • 8MADDALENA L, PETROSINO A. A self-arganizing approach to background subtraction for visual surveillance applications[ J ]. IEEE Trans on Image Processing,2008,17(7 ) :1168- 1 177.
  • 9JEON G, ANISETI'I M, BELLANDI V, et al. Designing of a type- 2 fuzzy logic filter for improving edge-preserving restoration of inter- laced-to-progressive conversion [ J ]. Information Sciences, 2009, 179(13) : 2194 -2207.
  • 10BROX P, BATURONE I, SaNCHEZ-SOLANO S, et al. A fuzzy edge-dependent motion adaptive algorithm for de-interlacing[ J]. Fuzzy Sets and Systems, 2007, 158(3): 337 -347.

共引文献53

同被引文献65

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部