期刊文献+

大数据样本分析中的快速KNN算法 被引量:1

下载PDF
导出
摘要 当前常用的分类技术中主要有KNN、AVM、人工神经网络以及决策树等方面。KNN算法具有高效性、快速性和便捷性的特点,在当前的数据样本分析中起到了良好的效果,是分类算法中常用的一种算法。本文主要是从快速KNN算法的相关情况入手,针对基于聚类的快速KNN改进算法进行全面说明和介绍,并相应的提出了快速KNN算法的实验设计。
作者 万中钰
出处 《信息系统工程》 2017年第1期153-153,共1页
  • 相关文献

参考文献2

二级参考文献37

  • 1YANG Yi-ming,PEDERSEN J O.A comparative study on feature selection in text categorization[C]//Proc of the 14th International Conference on Machine Learning.1997:412-420.
  • 2CHAKRABARTI S,DOM B,AGRAEAL R,et al.Using taxonomy,discriminants,and signature for navigating in text databases[C]//Proc of the 23rd VLDB Conference.1997:446-455.
  • 3NG H T,GOH W B,LOW K L.Feature selection,perceptron learning,and a usability case study for text categorizaion[C]//Proc of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.1997:67-73.
  • 4JOACHIMS T.Text categorization with support vector machines:learning with many relevant features[C]//Proc of the 10th European Conference on ML.1998:137-152.
  • 5YANGYi-ming,CHUTE C G.An example-based mapping method for text categorization and retrieval[J].ACM Trans on Information Systems,1994,12(3):252-277.
  • 6TSANG I W,KWOKJ T,CHEUNG P M.Core vector machines fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392.
  • 7YANG Yi-ming,LIU Xin.A re-examination of text categorization methods[C]//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Berkeley:ACM Press,1999:42-49.
  • 8TAN Song-bo.Neighbor-weighted K-nearest neighbor for unbalanced text corpus[J].Expert Systems with Applications,2005,28(4):667-671.
  • 9Zhang Shichao. KNN-CF approach:incorporating certainty factor to KNN classification[J] . IEEE Intelligent Informatics Bulletin, 2010, 11(1):24-33.
  • 10Zhang Shichao, Zhang Chengqi, Yan Xiaowei. Post-mining:maintenance of association rules by weighting[J] . Information Systems, 2003, 28(7):691-707.

共引文献84

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部