期刊文献+

可提取衍生目标的带标签GM-PHD算法 被引量:1

Labeling GM-PHD Filter with Spawning Targets
下载PDF
导出
摘要 针对带标签的高斯混合概率假设密度滤波算法无法获取衍生目标的问题,提出一种可以提取衍生目标的带标签GM-PHD算法。首先,通过为高斯项加注标签的方式区别不同的目标,以辨别单个目标及其航迹。其次,在滤波过程中,对每一时刻得到的状态估计值与已形成的航迹标签进行匹配关联,实现航迹维持。最后,通过设置衍生阈值来判断状态估计中是否存在衍生目标以及可能产生的目标个数,为新生目标高斯项和可能的衍生目标高斯项重新分配标签,并创建新的航迹。仿真实验结果表明,与传统的带标签GM-PHD算法相比,在衍生目标存在的情况下,改进算法具有更好的跟踪性能。 The Labeling Gaussian Mixture Hypothesis Probability Density filter (LGM-PHD) cannot get the spawn targets. Addressing this problem, an improved algorithm is presented. Firstly, the labels are applied to the Gaussian items in the GM-PHD filter to distinguish different targets, and their tracks are determined. After that, in the period of filtering, the track labels between the current step and former step are matched, associated and maintained. Finally, the spawn threshold is used to determine if there are spawn targets or not and determine the number of possible spawn targets, then the labels for Gaussian items of new targets and possible spawn targets are reallocated. The simulation results show, in the situation of existing spawn targets, the improved algorithm has better tracking performance than the LGM-PHD.
出处 《光电工程》 CAS CSCD 北大核心 2016年第12期79-84,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61201118) 陕西省自然科学基础研究计划项目(2016JM6030) 西安工程大学研究生创新基金项目(CX201631) 西安工程大学学科建设项目
关键词 概率假设密度滤波 随机有限集 状态估计 衍生目标 带标签GM-PHD probability hypothesis density filter random finite sets sate estimation spawn targets labeling GM-PHD
  • 相关文献

参考文献1

二级参考文献10

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2Mahler R. Statistical multisource multitarget information fusion[M]. Norwood, MA: Artech House, 2007.
  • 3Mahler R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 4Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD filter for multitarget tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2006, 42(3): 778-795.
  • 5Panta K, Vo B-N, Singh S, et al. Probability hypothesis density filter versus multiple hypothesis tracking[C]. Proc of SPIE, Signal Processing, Sensor Fusion and Target Recognition ⅩⅢ. Bellingham, 2004, 5429: 284-295.
  • 6Panta K, Vo B, Singh S. Improved probability hypothesis (PHD) filter for multitarget tracking[C]. Proc of the Int Conf on Intelligent Sensing and Information Processing. Bangalore, 2005:213-218.
  • 7Ma W-K, Vo B-N, Singh S, et al. Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach[J]. IEEE Trans on Signal Processing, 2006, 9: 3291-3304.
  • 8Vo B-T, Vo B-N, Cantoni A. Bayesian filtering with random finite set observations[J]. IEEE Trans on Signal Processing, 2008, 56(4): 1313-1326.
  • 9Vo B-N, Singh S, Ma W-K. Tracking multiple speakers with random sets[C]. Proc of IEEE Int Conf on Acoust, Speech, Signal Process. Montreal, 2004, 2: 357-360.
  • 10Vo B-N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4): 1124-1245.

共引文献4

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部