期刊文献+

基于轮廓匹配的前视红外建筑目标提取

Building Target Extraction from Forward-looking Infrared Images Based on Contour Matching
下载PDF
导出
摘要 针对前视红外图像中建筑物的提取问题,本文利用阈值分割和轮廓匹配,提出了一种基于目标轮廓模板的建筑物自动提取算法。首先,设计了一种目标极性判断方法,它能够自动判断目标极性、选取正确的阈值分割结果,并从分割结果中提取封闭轮廓边缘点;然后,对模板和实时图像的边缘点进行曲线段检测和直线段分割,并在模板的指导下完成实时图像轮廓直线段筛选;最后,通过模板轮廓与筛选后实时图像轮廓的匹配完成建筑目标提取。实验结果表明,该算法实现了目标区域的准确提取,在目标图像尺寸小于120×120时,算法执行时间约为3s,能够满足工程应用的需求。 According to the requirement of building target extraction from forward looking infrared images, a target extrac- tion strategy based on threshold segmentation and contour matching is proposed to realize automatic building target extraction. Firstly, a target polarity judgment method which will judge the target polarity and select the right segmentation result automatically is designed, and the closed contour edge point is extracted from the segmentation resuh. Secondly, curve detection and straight line segmentation are conducted on to the edge points of template and real-time images, and the straight lines are selected under the guidance of target template. Finally, the building target extraction is completed by matching the template contour with the se- lected real-time image contour. Experiment results demonstrate that the proposed method can realize accurate target region extrac- tion and the algorithm execution time is about three seconds when the image size is smaller than 120 × 120, which will satisfy the requirement of engineering application.
出处 《测绘科学与工程》 2016年第6期31-35,共5页 Geomatics Science and Engineering
关键词 前视红外 目标提取 轮廓匹配 阈值分割 forward-looking infrared target extraction contour matching threshold segmentation
  • 相关文献

参考文献2

二级参考文献12

  • 1王歆玥,高旭辉.一种自适应阈值分割方法[J].红外与激光工程,2006,35(z4):167-171. 被引量:12
  • 2Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques [J]. Computer Vision, Graphics and Image Processing, 1988, 41(2): 233-260.
  • 3Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on System Man and Cybernetics, 1978, SMC-8: 62-66.
  • 4Hou Z, Hu Q, Nowinski W L. On minimum variance thresholding [J]. Pattern Recognition Letters, 2006, 27(14): 1732 - 1743.
  • 5Kittler J, Illingworth J. Minimum error thresholding [J]. Pattern Recognition, 1986, 19(1): 41-47.
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics and Image Processing, 1985, 29(3): 273-285.
  • 7Li C H, Lee C K. Minimum cross entropy thresholding [J]. Pattern Recognition, 1993, 26(4): 617-625.
  • 8Li Zuoyong, Liu Chuancai, Liu Guanghai, et al. Statistical thresholding method for infrared images[J]. Pattern Analysis and Applications, 2011, 14: 109-126.
  • 9Hu Q, Hou Z, Nowinski W L. Supervised range-constrained thresholding [J]. IEEE Transactions on Image Processing, 2006, 15(1): 228-240.
  • 10李佐勇,刘传才,程勇,赵才荣.红外图像统计阈值分割方法[J].计算机科学,2010,37(1):282-286. 被引量:21

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部