期刊文献+

离散半马氏风险模型中的期望罚金函数(英文)

On the Expected Penalty Functions in a Discrete Semi-Markov Risk Model
下载PDF
导出
摘要 本文研究离散半马氏风险模型中的期望罚金函数,所考虑的模型包含了多个已有的风险模型,如(具有延迟索赔)复合二项模型和(具有延迟索赔)复合马氏二项模型.通过一个简单的方法得到了两状态模型中期望罚金函数的递推公式和初始值.我们也对所得结果给出了一些应用. This paper considers the expected penalty functions for a discrete semi-Markovrisk model, which includes several existing risk models such as the compound binomial model (with time-correlated claims) and the compound Markov binomial model (with time-correlated claims) as special cases. Recursive formulae and the initial values for the discounted free penalty functions are derived in the two-state model by an easy method. We also give some applications of our results.
作者 刘海燕 陈密
出处 《应用概率统计》 CSCD 北大核心 2016年第6期592-602,共11页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China(11426063) the Natural Science Foundation of Fujian Province(2015J05003) the Scientific Research Foundation of Fujian Provincial Education Department(JA14077)
关键词 期望罚金函数 母函数 递推公式 半马氏风险模型 expected penalty function generating function recursive formula semi-Markovrisk model
  • 相关文献

参考文献1

二级参考文献15

  • 1Bao, Z.H., A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194(2007), 276-286.
  • 2Cai, J. and Dickson, D.C.M., On the expected discounted penalty function at ruin of a surplus process with interest, Insurance: Mathematics and Economics, 30(2002), 389-404.
  • 3Cheng, S.X., Gerber, H.U. and Shiu, E.S.W., Discounted probabilities and ruin theory in the com- pound binomial model, Insurance: Mathematics and Economics, 26(2000), 239-250.
  • 4Cheng, S.X. and Zhu, R.D., The asymptotic formulas and Lundberg upper bound in fully discrete risk model, Applied Mathematics: A Journal of Chinese Universities (Series A), 16(3)(2001), 348-358 (in Chinese).
  • 5Cossette, H., Landriault, D. and Marceau, E., Ruin probabilities in the compound Markov binomial model, Scandinavian Actuarial Journal, 4(2003), 301-323.
  • 6Cossette, H., Landriault, D. and Marceau, E., Exact expressions and upper bound for ruin probabil- ities in the compound Markov binomial model, Insurance: Mathematics and Economics, 34(2004), 449-466.
  • 7DeVylder, F. and Marceau, E., Classical numerical ruin probabilities, Scandination Actuarial Journal, 2(1996), 109-123.
  • 8Dickson, D.C.M., Some comments on the compound binomial" model, Astin Bulletin, 24(1994), 33-45.
  • 9Gerber, H.U., Mathematical fun with the compound binomial process, Astin Bulletin, 18(1988), 161-168.
  • 10Karlin, S. and Taylor, H.M., A First Course in Stochastic Processes, Academic press, New York, 1975.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部