期刊文献+

基于高阶偏差的因子分解机推荐算法 被引量:5

High-order biased factorization machine recommender algorithm
下载PDF
导出
摘要 在推荐系统中,因评分尺度差异而造成的偏差问题一直影响着协同过滤算法的预测准确性。其中针对矩阵因子分解算法中的偏差问题,提出一种基于高阶偏差的因子分解机算法。该算法首先按照评分偏差的现实特征对用户和项目进行划分,再将偏差类别作为辅助特征集成到因子分解机中,实现了评分预测中不同偏差用户、项目的高阶交互。在MovieLens数据集上的实验结果表明,相比传统矩阵因子分解算法,提出的算法具有更低的预测误差,体现了其更好的推荐性能。 In recommender system, bias problem caused by different rating scales has always effected the predict precision of collaborative filtering. Concerning this bias problem of matrix factorization, this paper proposed a high-order biased factorization machine recommender algorithm. Firstly, it grouped users and items by their rating bias feature from real world, then integrated them into the factorization machine, which provided the high-order interactions between the different biased users and items. The experimental results on MovieLens datasets demonstrate that the proposed algorithm has lower prediction error than other traditional matrix factorization algorithms, which shows its better recommender performance.
出处 《计算机应用研究》 CSCD 北大核心 2017年第2期339-342,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(11201290 61104042)
关键词 推荐系统 矩阵因子分解 因子分解机 评分偏差 recommender system matrix factorization factorization machine rating bias
  • 相关文献

参考文献7

二级参考文献207

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 4Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 5梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 6Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 8Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 9Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 10Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87

共引文献474

同被引文献36

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部