期刊文献+

基于改进核主元和支持向量数据描述故障检测 被引量:2

Fault Detection Based on Improved Kernel Principal Component and Support Vector Data Description
下载PDF
导出
摘要 提出基于改进核主元和支持向量数据描述(SVDD)故障检测方法,适合于复杂工业过程具有非线性和非高斯性的情况。首先,通过对核主元(KPCA)特征空间样本进行重构误差,在样本集上自动识别异常值,减少对KPCA算法的影响并增强非线性核映射。然后,利用支持向量数据描述算法处理数据非高斯信号,据此构建统计量对工业过程进行检测。最后,将所提出的改进核主元和支持向量数据描述方法应用于田纳西-伊斯曼(TE,Tennessee Eastman)过程的仿真实验,结果说明提出方法的有效性。 The method of fault detection based on improved kernel principal component and support vector data description(SVDD) is proposed, which is suitable for complex industrial processes with nonlinear and non Gauss. First of all, based on the reconstruction error of kernel principal component analysis (KPCA) feature space sample, the outliers in the sample set are automaticlly identified to reduce the impact on the KPCA algo- rithm and enhance the nonlinear kernel mapping. Then, the support vector data description algorithm is used to process non-Gauss signal, whereby to construct statistic to detect the industrial processes. Finally, the proposed improved kernel principal component and support vector data description method is applied to the Tennessee Eastman (TE) simulation process. The results show the effectiveness of the proposed method.
出处 《测控技术》 CSCD 2017年第1期37-41,共5页 Measurement & Control Technology
基金 国家自然科学基金(61263010 60904049) 江西省科技厅项目(20161BBE50082 20161BAB202067 20114BAB211014)
关键词 复杂工业过程 非线性 SVDD 故障检测 complex industrial process nonlinear SVDD fault detection
  • 相关文献

参考文献1

二级参考文献23

  • 1赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 2Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis [J]. AIChE J., 1994, 40: 1361-1375.
  • 3Nomikos P, MacGregor J F. Multi-way partial least square in monitoring batch processes [J]. Chem. Intell. Lab. Syst., 1995, 30: 97-108.
  • 4Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chem. Intell. Lab. Syst., 1995, 30: 179-196.
  • 5Bakshi B R. Multiscale PCA with applications to multivariate statistical process monitoring [J]. AIChE J., 1998, 44: 1596-1610.
  • 6Cheng C, Chiu M S. Nonlinear process monitoring using JITL-PCA [J]. Chem. Intell. Lab. Syst., 2005, 76:1-13.
  • 7Kim D, Lee I B. Process monitoring based on probabilistic PCA [J]. Chemom. Intell. Lab. Syst., 2003, 67: 109-123.
  • 8Zhang Y, Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS [J]. Chem. Eng. Sci., 2011, 66: 64-72.
  • 9Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis [J]. J. Process Control., 2004, 14: 467-485.
  • 10Lee J M, Yoo C K, Lee I B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chem. Eng. Sci., 2004, 59: 2995-3006.

共引文献10

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部