期刊文献+

多索-梁结构固有振动特性分析 被引量:17

NATURAL VIBRATION ANALYSIS OF MULTI-CABLES-STAYED BEAM STRUCTURES
原文传递
导出
摘要 进行了单索-梁结构和二索-梁结构模型固有振动试验,采用斜拉桥整体动力分析有限元方法建立了索梁结构有限元模型,与试验结果进行的比较验证了所建有限元模型的正确性。通过对单索-梁结构至四索-梁结构的固有振动特性的有限元分析表明,斜拉索的存在和数量对索梁结构的面内固有频率影响较大,对面外固有频率影响很小;斜拉索的增加使索梁结构面内振动频率增大的主要原因是斜拉索对主梁起到竖向支承的作用。将斜拉索竖向支承作用简化为弹性支撑,考虑斜拉索水平分力对主梁轴力的影响,推导得到了多索-梁结构面内固有振动的频率方程和振型函数,与有限元计算结果进行的对比说明了所得简化公式的正确性和适用性。 Natural vibration tests of single-cable-stayed beam and double-cables-stayed beam are conducted. Models of the two structures are established by the finite element method for the global dynamic analysis of cable-stayed bridges, and their accuracy is verified by the test results. According to the finite element analysis of single-cable-stayed beams to four-cables-stayed beams, the influence of the existence and number of cables on in-plane natural frequency is large, but that on out-of-plane natural frequency is small. Because cables support the beam vertically, the increase in the number of cables will lead to an increase in the in-plane natural frequency of cable-stayed beam structures. By assuming the cable's vertical support to be elastic and considering the effect of the horizontal component of cable force on the axial force of the beam, the frequency equation and mode function of in-plane natural vibration for multi-cables-stayed beams are derived. The validity and applicability of the simplified formulas are verified by finite element analyses.
出处 《工程力学》 EI CSCD 北大核心 2017年第1期109-116,129,共9页 Engineering Mechanics
基金 教育部"新世纪优秀人才支持计划"项目(NCET-13-0737)
关键词 桥梁工程 固有振动 试验 有限元法 多索-梁结构 斜拉索 简化公式 bridge engineering natural vibration experiment finite element method multi-cables-stayed beam stay cable simplified equation
  • 相关文献

参考文献10

二级参考文献70

  • 1赵跃宇,吕建根.索—拱组合结构中斜拉索的非线性参数振动[J].土木工程学报,2006,39(12):67-72. 被引量:17
  • 2Matsumoto M, Shiraishi N, Shirato H. Rain-Wind Induced Vibration of Cables of Cable-Stayed Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41 - 44 : 2011 - 2022.
  • 3Zhao Y Y, Wang L H, Chen D L, et al. Nonlinear Dynamic Analysis of the Two-Dimensional Simplified Model of an Elastic Cable [J]. Journal of Sound and Vibration, 2002, 255 : 43 - 59.
  • 4Zhao Y Y, Wang L H, On the Symmetrical Modal Interaction of the Suspended Cable: Three-to-One Internal Resonance [J]. Journal of Sound and Vibration, 2006, 294:1073 - 1093.
  • 5Lianhua Wang, Yueyu Zhao. Non-Linear Planar Dynamics of Suspended Cables Investigated by the Continuation Technique [J]. Engineering Structures, 2007, 29 : 1135 - 1144.
  • 6Gattulli V, Morandini M, Paolone A. Parametric Analytical Model for Non-Linear Dynamics in Cable-Stayed Beam [J]. Earthquake Engineering and Structural Dynamic, 2002, 31:1281 - 1300.
  • 7H Max Irvine. Cable Structure[M]. Massachusetts: The MIT Press, 1981 : 22 - 26.
  • 8Tagata G. Harmonically Forced, Finite Amplitude Vibration of a String [J]. Journal of Sound and Vibration, 1977, 51(4): 483-492.
  • 9AH奈弗,DT穆克.非线性振动[M],北京:高等教育出版社,1990:31-35.
  • 10Y Fujino,P Warnitchai,B M Pacheco.An experimental and Analytical Study of Autoparametric Resonance in a 3D of Model of Cable-Stayed-Beam.Nonlinear Dynamics,1993,4:111-138.

共引文献88

同被引文献101

引证文献17

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部