期刊文献+

超高层建筑横风向气动阻尼比简化估算方法研究 被引量:11

ACROSS WIND AERODYNAMIC DAMPING OF SUPER TALL BUILDINGS
原文传递
导出
摘要 通过3种高宽比、3种粗糙度流场、多种质量-阻尼参数的多自由度气弹模型风洞试验,分析了折算风速、风场粗糙度、高宽比、结构质量、结构阻尼比和涡振位移等因素对横风向气动阻尼比的影响。分析表明,正气动阻尼比与结构阻尼比负相关,而负气动阻尼比绝对值与结构阻尼比正相关,结构质量与气动阻尼比绝对值负相关,风场越粗糙或模型高宽比越小负气动阻尼比越不显著。整体来看,气动阻尼比本身不足以评价气弹响应的显著程度,以气动阻尼比本身作为经验公式的拟合对象有很大局限性。最后提出了协调气动阻尼比的概念,在此基础上建立了改进的气动阻尼比经验拟合公式,该拟合公式考虑了以上各因素对气动阻尼比的影响,为气动阻尼比的估算方法提供了新的思路。 Based on the wind tunnel test of MDOF models with various aspect ratios and mass-damping parameters, the influence on the crosswind aerodynamic damping ratio was analyzed due to reduced wind speed, wind field roughness, aspect ratio, structural mass, structural damping, as well as VIV displacement. It was found that positive aerodynamic damping is usually negatively correlated with a structural damping ratio, but the negative aerodynamic damping is positively correlated with structural damping, while the absolute value of an aerodynamic damping ratio is negatively correlated with structural mass. Furthermore, the positive aerodynamic damping is less significant in airflow over smooth terrain than over terrain category. Therefore, an empirical formula based on aerodynamic damping data alone cannot be reliably established, because an aerodynamic damping ratio alone is insufficient to assess the significance of aerodynamic effect. Thusly, these considerations lead to the proposal of the concept of a converted damping ratio. This concept allows an empirical formula to be established for an improved aerodynamic damping ratio.
出处 《工程力学》 EI CSCD 北大核心 2017年第1期145-153,共9页 Engineering Mechanics
基金 国家自然科学基金项目(51178359 51308195) 河南省科技厅科技攻关项目(132102210252)
关键词 超高层建筑 多自由度气弹模型 气动阻尼比 协调气动阻尼比 涡致振动 tall buildings MDOF model aerodynamic damping converted aero-damping vortex-induced vibration
  • 相关文献

参考文献5

二级参考文献31

  • 1杨志勇.[D].武汉:武汉工业大学,1998.
  • 2Liang Shuguo, Liu S, Zhang L. Mathematical model of across-wind dynamic loads on rectangular tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1757-1770.
  • 3Kareem A. Wind excited motion of buildings thesis for the degree of doctor of philosophy [D]. Colorado state University at Fort Collin, Colorad, 1978.
  • 4Kareem A, Gurley K. Damping in structures: its evaluation and treatment of uncertainty [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(2-3): 131 - 157.
  • 5Vickery B J, Stekley A. Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 121 - 140.
  • 6Stekley A, Vickery B J. On the measurement of motion-induced force on models in turbulent shear flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(Part I): 339-350.
  • 7Cheng C M . Acrosswind aerodynamic damping of isolated square-shaped buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1743-1756.
  • 8Maxukawa H, Kato N, Fujii K, Tamura Y. Experimental evaluation of aerodynamic damping of tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(2-3): 177-90.
  • 9Kareem A. Wind excited motion of buildings thesis for the degree of Doctor of Philosophy[D]. Colorado State University at Fort Collin, Colorad, 1978.
  • 10Watanabe Y, Isyumov N, Davenport A G. Empirical aerodynamic damping function for tall building[C]. 9ICWE, New Delhi, India, 1995. 1362-1371.

共引文献53

同被引文献72

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部