摘要
传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(Image Segmentation Algorithm of Spectral Clustering Optimization Based on Genetic,ISCOG)。在合成图像与真实图像上的实验表明ISCOG算法极大地提高了谱聚类算法的稳定性和聚类质量,证明了ISCOG算法的优越性。
The traditional spectral clustering methods use k-means to achieve the final clustering. But k-means is sensi- tive to initial conditions and easily plunges into local optimum, which influence the effect of image segmentation with spectral clustering method. This paper proposed an image segmentation algorithm of spectral clustering optimized by ge- netic algorithm(ISCOG), using the GA instead of k-means in spectral clustering algorithm The experiments on synthetic images and real images show that ISCOG algorithm greatly improves the stability and clustering quality of the spectral clustering algorithm.
作者
覃晓
梁伟
元昌安
唐涛
QIN Xiao LIANG Wei YUAN Chang-an TANG Tao(College of Computer and Information Engineering, Guangxi Teachers Education University, Nanning 530023, China The Institute of Science and Technology Information of Guangxi Jiangzhou District of Chongzuo City, Nanning 532202, China)
出处
《计算机科学》
CSCD
北大核心
2017年第1期100-102,133,共4页
Computer Science
基金
国家自然科学基金(61363037)
广西自然科学基金(2016GXNSFAA380209)资助
关键词
图像分割
遗传算法
谱聚类
优化
Image segmentation, Genetic algorithm, Spectral clustering, Optimization