期刊文献+

基于遗传优化谱聚类的图形分割方法 被引量:4

Image Segmentation Algorithm of Spectral Clustering Optimized by Genetic
下载PDF
导出
摘要 传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(Image Segmentation Algorithm of Spectral Clustering Optimization Based on Genetic,ISCOG)。在合成图像与真实图像上的实验表明ISCOG算法极大地提高了谱聚类算法的稳定性和聚类质量,证明了ISCOG算法的优越性。 The traditional spectral clustering methods use k-means to achieve the final clustering. But k-means is sensi- tive to initial conditions and easily plunges into local optimum, which influence the effect of image segmentation with spectral clustering method. This paper proposed an image segmentation algorithm of spectral clustering optimized by ge- netic algorithm(ISCOG), using the GA instead of k-means in spectral clustering algorithm The experiments on synthetic images and real images show that ISCOG algorithm greatly improves the stability and clustering quality of the spectral clustering algorithm.
作者 覃晓 梁伟 元昌安 唐涛 QIN Xiao LIANG Wei YUAN Chang-an TANG Tao(College of Computer and Information Engineering, Guangxi Teachers Education University, Nanning 530023, China The Institute of Science and Technology Information of Guangxi Jiangzhou District of Chongzuo City, Nanning 532202, China)
出处 《计算机科学》 CSCD 北大核心 2017年第1期100-102,133,共4页 Computer Science
基金 国家自然科学基金(61363037) 广西自然科学基金(2016GXNSFAA380209)资助
关键词 图像分割 遗传算法 谱聚类 优化 Image segmentation, Genetic algorithm, Spectral clustering, Optimization
  • 相关文献

参考文献7

二级参考文献113

  • 1刘云峰 ,齐欢 ,HU Xiang'en ,CAI Zhiqiang ,代建民 .基于潜在语义空间维度特性的多层文档聚类[J].清华大学学报(自然科学版),2005(S1):1783-1786. 被引量:11
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 4刘颖,谷延锋,张晔,张钧萍.一种高光谱图像波段选择的快速混合搜索算法[J].光学技术,2007,33(2):258-261. 被引量:9
  • 5Tremuau A, Borel N. A region growing and merging algorithm to color segmentation [ J ]. Pattern Recognition, 1997,30 (7) : 1191 - 1203.
  • 6Shi Jianbo , MALIK J. Normalized cuts and image segmentation[ C ]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 1997.731 - 737.
  • 7Shi Jianbo , MALIK J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) :888 - 905.
  • 8Lloyd S P. Least squares quantizetionn in PCM[J]. IEEE transac- tions on Information Theory. vol. IT-28, no. 2, 1982:129 - 136.
  • 9Suk M, Cho T H. Segmentation of images using minimum Spanning Tree[J]. In Applications of Digital Images processing V. Proc. SPIE 397,1983 : 180 - 185.
  • 10Koza J R. Genetic Programming : On the Programming of Computers by Means of Natural Selection [ M ]. MIT Press, Cambridge, MA, USA, 1992.

共引文献192

同被引文献11

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部