摘要
研究时标上非线性项包含低阶导数的p-Laplacian三点边值问题:(φ_p(u~Δ(t)))~v+h(t)f(t,u(t),u~Δ(t))=0,t∈(0,T)T,u(0)=0,u(η)=u(T)伪对称解的存在性,其中η∈(0,T)T且T在[η,T]T上是对称的,p〉1,φp(u)=up-2u.利用伪对称技巧和锥上的五泛函不动点定理证明了边值问题至少有3个正的伪对称解.作为应用,给出例子验证了所得结果.所得结论在相应的微分方程(T=R),差分方程(T=Z)以及通常的时标上都是新的.
The following three-point boundary value problem for p-Laplacian dynamic equations with nonlinear term involving derivative on time scales T of the form is considered(φ_p(u~Δ(t)))~v+h(t)f(t,u(t),u~Δ(t))=0,t∈(0,T)_T,u(0)=0,u(η)=u(t),where pη∈(0,T)T,T is symmetric in[η,T]T and φp(u)= u-2u with p〉1.By using pseudo-symmetric technique and the five functional fixed-point theorem,it is proved that the boundary value problem has at least three positive pseudo-symmetric solutions under some assumptions.As an application,an example is given to illustrate the main results.The results are new even for the corresponding differential(T=R),difference equations(T=Z)as well as in general time scales.
出处
《宁夏大学学报(自然科学版)》
CAS
2016年第4期409-415,共7页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(11361047
11501560)
江苏省自然科学基金资助项目(BK20151160)
青海省自然科学基金资助项目(2012-Z-910)
江苏省六大人才高峰项目(2013-JY-003)
徐州工程学院重点项目(2013102)
关键词
时标
边值问题
伪对称解
五泛函不动点定理
time scales
boundary value problems
pseudo-symmetric solutions
five functional fixed-point theorem