摘要
基于Akishita在Montgomery形式椭圆曲线上计算双标量乘kP+lQ的思想,提出了一种计算三标量乘kP+lQ+tR的新算法,使运算量减少了约23%。在上述算法基础上提出一种椭圆曲线上分段计算标量乘bP的方法,通过预计算少量点,将计算bP转化为计算kP+lQ或kP+lQ+tR,并使用边信道原子化的方法使其可以抵抗简单能量分析(SPA)攻击。最后使用Magma在二进制域上对分段算法仿真,结果显示二分段算法计算速度最快,三分段算法其次,在效率上均比原始Montgomery算法提升很大。
Based on the Akishita's idea of computing scalar multiplication kP +lQ on elliptic curve with Montgomery form, we propose a new algorithm to reduce the computation for scalar multiplication kP+lQ+tR by 23%. We then propose a subsection method on the basis of the above two algorithms to enhance the efficiency of computing scalar multiplication bP on elliptic curve by converting bP to kP+lQ or kP+lQ +tR, which combines the concept of side-channel atomicity to resist SPA attacks. Simulations on Magma demonstrate that the two-segmentation algorithm is the fastest and the three-segmentation algorithm is the second, and they can both greatly improve the efficiency in comparison with the original Montgomery algorithm.
作者
李杨
王劲林
曾学文
叶晓舟
LI Yang WANG Jin-lin ZENG Xue-wen YE Xiao-zhou(National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 University of Chinese Academy of Sciences, Beijing 100049 ,China)
出处
《计算机工程与科学》
CSCD
北大核心
2017年第1期92-102,共11页
Computer Engineering & Science
基金
中国科学院战略性先导科技专项课题(XDA06010302)
中国科学院声学研究所知识创新工程项目(Y154191601)