期刊文献+

基于KL散度的RNA-Seq数据差异异构体比例检测 被引量:3

Differential isoform ratio detection based on KL divergence for RNA-Seq data
下载PDF
导出
摘要 近年来,RNA-seq技术被广泛应用于差异表达基因和异构体的检测,但目前大多数方法都是识别单个异构体的差异表达,无法同时检测同一个基因中所包含异构体表达比例的差异,因此提出一个差异异构体比例检测方法。该方法基于先前设计的sLDASeq模型,运用该模型中隐含变量的概率分布,采用KL散度进行差异异构体比例的分析。首先使用最新的SEQC数据集评估sLDASeq模型表达水平的性能,结果表明该方法能准确地估计基因中异构体的比例。接着通过模拟数据集进行差异异构体比例的检测,与其他方法相比,实验结果表明该方法在差异异构体比例检测方面具有较高的准确性。 RNA-seq technology has been widely applied in detecting differential gene and isoform expression. However, many methods have been developed for detecting difference in expression for each individual iso- form of a gene, rather than for the ratio of all the isoforms in the same gene. Now we present a new method to test each gene for differential isoform ratio between two conditions. The method is based on the previously designed sLDASeq and adopts the KL divergence for the detection of differential isoform ratio. We first use the new benchmark, SEQC, to validate sLDASeq's performance on gene and isoforrn expression calculation. The results show that the model can calculate the proportion of isoforms in a gene accurately. We then use the KL divergence of the probability of the latent variables of the sLDASeq to detect differential isoform ratios between the two conditions of simulation datasets. The results show that the proposed method has a high accuracy in comparison with other methods in detecting differential isoform ratio.
作者 欧书华 刘学军 张礼 OU Shu-hua LIU Xue-jun ZHANG Li(College of Computer Science & Technology, Nanjing University of Aeronautics& Astronautics, Nanjing 211106,China)
出处 《计算机工程与科学》 CSCD 北大核心 2017年第1期158-164,共7页 Computer Engineering & Science
基金 国家自然科学基金(61170152)
关键词 RNA—Seq基因异构体表达水平 平滑LDA KL散度 差异异构体比例 RNA-Seq gene isoform expression smoothed LDA KL divergence differential isoform ratio
  • 相关文献

参考文献2

二级参考文献112

  • 1Marioni J C, Mason C E, Mane S M, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008, 18(9): 1509-1517.
  • 2Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7): 621-628.
  • 3Nagalakshmi U, Wang Z, Waem K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 2008, 320(5881): 1344-1349.
  • 4Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, 321(5891): 956-960.
  • 5Wang E T, Sandberg R, Luo S, etal. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221): 470-476.
  • 6Birzele F, Schaub J, Rust W, et al. Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing. Nucleic Acids Res, 2010, doi: 10.1093/nar/ gkq 116.
  • 7Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain- terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74 (12): 5463 -5467.
  • 8Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376-380.
  • 9Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135 1145.
  • 10Ruparel H, Bi L, Li Z, et al. Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proe Natl Acad Sci USA, 2005, 102(17): 5932-5937.

共引文献63

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部