摘要
针对支持向量机的参数寻优缺乏数学理论指导,传统人工蜂群算法易陷入长期停滞的不足,而混沌搜索算法具有很好的随机性和遍历性,提出了基于混沌更新策略人工蜂群支持向量机参数选择模型(IABC-SVM)。该模型利用混沌搜索对侦察蜂搜索方式进行改进,有效提高蜂群算法搜索效率。以UCI标准数据库中的数据进行数值实验,采用ACO-SVM、PSO-SVM、ABC-SVM作为对比模型,实验表明了IABC在SVM参数优化中的可行性和有效性,具有较高的预测准确率和较好的算法稳定性。
There is little mathematical th tor machines (SVMs), and the traditional a eory guidance for the parameter optimization of support vecrtificial bee colony (ABC) is easy to fall into the long-term stagnation. Since the chaotic search algorithm has good randomicity and ergodicity, we propose a parameter optimization model based on the ABC algorithm with the chaos update strategy (IABC-SVM) to solve this problem. This model uses the chaotic search algorithm to improve the searching way of reconnaissance peak, and improve the ABC's searching efficiency. We evaluate the proposed algorithm on the public data sets from University of California Irvine (UCI), and compare it with the ACO-SVM, PSO- SVM, and ABC-SVM models. Experimental results show that the IABC algorithm is feasible and effective for optimizing SVM parameters, and has higher prediction accuracy and better stability.
作者
高雷阜
王飞
GAO Lei-fu WANG Fei(Institute of Optimization and Decision, Liaoning Technical University, Fuxin 123000,China)
出处
《计算机工程与科学》
CSCD
北大核心
2017年第1期199-205,共7页
Computer Engineering & Science
基金
教育部高校博士学科科研基金联合资助项目(20132121110009)
辽宁省教育厅基金(L2015208)
关键词
支持向量机
参数寻优
人工蜂群算法
混沌搜索
预测准确率
support vector machine
parameter optimization
artificial bee colony algorithm
chaotic search
prediction accuracy