摘要
文章研究了环R=F_2+uF_2+vF_2+uvF_2上的(1+u+v)-常循环码,定义了一个Gray映射,证明了该环上的(1+u+v)-常循环码的Gray像是等距的准循环码,并利用该映射得到了二元好码,进一步确定了任意长度该常循环码的结构,同时也讨论了它的对偶码。
In this paper, the (1+u+v)-constacyclic codes over the ring R=F2 +uF2 +vF2 +uvF2 are discussed. Firstly, a Gray map of C is defined and it is proved that under this map the Gray image of C over R is a binary distance invariant quasi-eyclie code. And their dual codes are discussed. Then a set of generators of such eonstacyclic codes for an arbitrary length is determined. Finally, an optimal binary code is obtained from the Gray map.
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2017年第1期140-144,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(11201107
11401154)