期刊文献+

错位条件下基于“感应盲点”分析的非接触变压器建模及优化 被引量:1

Modeling and Optimization of Contactless Transformer Based on "Null Coupling Position" Analysis Under Coil Misalignment
下载PDF
导出
摘要 感应式无线电能传输系统中,非接触变压器存在错位等多种工况,引起耦合系数等参数大范围变化,影响系统特性。为了建立错位条件下非接触变压器的耦合系数模型,文中基于场路结合的分析方法,分析磁通耦合特性,给出了非接触变压器的"感应盲点"求解方法;并结合其耦合系数的变化规律,建立非接触变压器错位条件下耦合系数的计算模型。基于磁场分布的特点,进一步提出副边多绕组的新型非接触变压器结构。采用优化后的变压器结构,设计制作了60 W输出的非接触变换器,耦合系数的计算结果和实际测试结果一致,证明了所提"感应盲点"分析方法与耦合系数计算模型的正确性,验证了优化后的新型非接触变压器具有良好的错位自适应能力。 In the inductive wireless power transfer system,the specified operating condition such as coil misalignment will cause the coupling coefficient of the contactless transformer to vary in a large range,further affecting the system operating characteristics.To build the coupling coefficient model under large coil misalignment,this paper gives an effective method for calculating the null coupling position based on the method of combining the field concept with circuit.According to the change law of the coupling coefficient,a model for finding the coupling coefficient under coil misalignment is developed.Then a novel contactless transformer with multiple receiving coils is proposed based on the characteristics of magnetic field distribution.A60 Wcontactless energy transmission system is designed with the optimized contactless transformer structure.The calculation results of the coupling coefficients are in agreement with actual test results,which proves the correctness of the proposed method and model.The novel coil set has achieved good tolerance to coil misalignment.
出处 《电力系统自动化》 EI CSCD 北大核心 2017年第2期15-20,120,共7页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(51677086) 航空科学基金资助项目(2015ZC52037)~~
关键词 无线电能传输 感应盲点 耦合系数模型 非接触变压器 wireless power transfer null coupling position coupling coefficient model contactless transformer
  • 相关文献

参考文献2

二级参考文献28

  • 1樊华,郑小林,皮喜田,彭承琳.一种用于体内诊疗装置的无线能量传输方案[J].北京生物医学工程,2004,23(3):168-170. 被引量:7
  • 2董宏林,段广仁,魏绍义,王科俊.径向电磁轴承气隙磁阻理论计算方法[J].黑龙江大学自然科学学报,2006,23(1):35-37. 被引量:2
  • 3赵修科.实用电源技术手册:磁性元器件分册[M].沈阳:辽宁科学技术出版社,2002.
  • 4Hayes J G, Egan M G, Murphy J M D, et al. Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface[J] . IEEE Trans. on Industrial Application, 1999, 35(4): 884-895.
  • 5Iwawaki K, Watada M, Takatani S, et al. The design of core-type transcutaneous energy transmission systems for arti cial heart[C]// 30th Annual Conference of the IEEE Industrial Electronics Society. Busan, Korea: IEEE, 2004: 948-952.
  • 6Wang Guoxing, Liu Wentai. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants[J]. IEEE Trans. on Circuits and Systems, 2005, 52(10): 2109-2117.
  • 7Lim H G, Yoon Y H, Lee C W, et al. Implementation of a transcutaneous charger for fully implantable middle ear hearing device[C]//27th Annual Conference of Engineering in Medicine and Biology. Shanghai, China: IEEE, 2005: 6813-6816.
  • 8SallainJestis, Villa J L, LlombartA, etal. Optimal designoflCPT systems applied to electric vehicle battery charge[J]. IEEE Trans. on Industrial Electronics, 2009, 56(6): 2140-2149.
  • 9SAE. SAE J-1773, Electric vehicle inductive coupling recommended practice[R]. Switzerland: Society ofAutomotiveEngineers, 1999.
  • 10Joung G B, Cho B H. An energy transmission system foran articial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Trans. on Power Electronics, 1998, 13(6): 1013-1022.

共引文献43

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部