摘要
利用经典的Uzawa法和修正的Hermitian和Skew-Hermitian分裂(MHSS)迭代法,提出一种新的Uzawa-MHSS迭代法求解一类复奇异鞍点问题,得到了该方法的半收敛定理,并分析了其半收敛性.数值实验表明,新迭代方法比经典的Uzawa法和MHSS法在求解鞍点问题时更有效.
Using the classical Uzawa method and modified Hermitian and Skew-Hermitian splitting (MHSS) iterative method, we proposed a new Uzawa-MHSS iterative method for solving a class of complex singular saddle-point problems. We obtained the semi-convergence theroem of the new method, and analyzed its semi-convergence. Numerical experiments show that the new iterative method is more effective than the classical Uzawa method and MHSS method to solve the saddle-point problems.
作者
熊劲松
高兴宝
XIONG Jinsong GAO Xingbao(School of Mathematics and Information Sciences, Shaanzi Normal University, Xi ~ an 710119, China)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第1期22-28,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11401469)
关键词
复奇异鞍点问题
Uzawa法
MHSS迭代法
半收敛性
complex singular saddle-point problem
Uazwa method
MHSS iterative method
semi-convergence