期刊文献+

实对称张量正定性的判定

Criterion for Positive Definiteness of Real Symmetric Tensors
下载PDF
导出
摘要 通过构造不同的正对角阵并结合不等式的缩放技巧,给出了H-张量一种新的判定方法,并给出偶数阶实对称张量,即偶次齐次多项式正定性的新实用判别条件. We gave a new criterion for H-tensors by constructing different positive diagonal matrices combined with scaling techniques of inequalities, and gave new practical criteria conditions for the positive definiteness of an even-order real symmetric tensor, i.e., an even-degree homogeneous polynomials.
作者 王峰 孙德淑 WANG Feng SUN Deshu(College of Science, Guizhou Minzu University, Guiyang 550025, Chin)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期38-42,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11361074 11501141) 贵州省科学技术基金(批准号:[2015]2073) 贵州省科技厅联合基金(批准号:[2015]7206) 贵州省教育厅自然科学基金(批准号:[2015]420)
关键词 实对称张量 H-张量 齐次多项式 正定性 real symmetric tensor H-tensor homogeneous polynomial positive definiteness
  • 相关文献

参考文献1

二级参考文献12

  • 1QI Liqun. Eigenvalues of a real supersymetric tensor [J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324.
  • 2Kannana M R, Mondererb N S, Bermana A. Some properties of strong H-tensors and general H- tensors [J]. Linear Algebra and its Applications, 2015, 476: 42-55.
  • 3YANG Yuning, YANG Qingzhi. Fruther results for Perron-Frobenius theorem for nonnegative tensors [J]. SIAM Journal on Matrix Analysis and Applications, 2010, 31(5): 2517-2530.
  • 4Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs [J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4): 1095-1124.
  • 5Lim L H. Singular values and eigenvalues of tensors: a variational approach [C]//Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005, 1: 129-132.
  • 6WANG Feng, SUN Deshu, ZHAO Jianxing, LI Chaoqian. New practical criteria for H-tensors and its application [J]. submitted to Linear and Multilinear Algebra.
  • 7QI Liqun, WANG Fei, WANG Yiju. Z-eigenvalue methods for a global polynomial optimization problem [J]. Mathematical Programming, 2009, 118(2): 301-316.
  • 8NI Qin, QI Liqun, WANG Fei. An eigenvalue method for the positive definiteness identification problem [J]. IEEE Transactions on Automatic Control, 2008, 53(5): 1096-1107.
  • 9NI Guyan, QI Liqun, WANG Fei, WANG Yiju. The degree of the E-characteristic polynomial of an even order tensor [J]. Journal of Mathematical Analysis and Applications, 2007, 329(2): 1218-1229.
  • 10ZHANG Liping, QI Liqun, ZHOU Guanglu. M-tensors and some applications [J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35(2): 437-452.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部