期刊文献+

一类新型Bernstein-Sikkema-Bezier算子在Orlicz空间内的收敛性与逼近阶的估计

The convergence and degree of approximation of a new type of Bernstein-Sikkema-Bezier operator in Orlicz spaces
下载PDF
导出
摘要 构造了一类新型的Bernstein-Sikkema-Bezier算子,并利用K泛函、连续模、凸函数的Jensen不等式、Hardy-Littlewood极大函数等工具研究了Bernstein-Sikkema-Bezier算子在Orlicz空间内的逼近问题,得到了该算子在Orlicz空间内的收敛性与逼近阶的估计. Constructes a new type of Bernstein-Sikkema-Bezier operator,studies the approximation problem and obtains the convergence and degree of approximation in Orlicz space by using K-functional,modulus of continuity,the convex property of N-function,Jensen inequality and Hardy-Littlewood great functio.
出处 《高师理科学刊》 2017年第1期1-5,共5页 Journal of Science of Teachers'College and University
基金 国家自然科学基金资助项目(11161033) 内蒙古自治区研究生科研创新基金资助项目(S20161013501)
关键词 新型Bernstein-Sikkema-Bezier算子 ORLICZ空间 收敛性 逼近阶 Bernstein-Sikkema-Bezier operator Orlicz space convergence degree of approximation
  • 相关文献

参考文献2

二级参考文献11

  • 1Wu Garidi.On Approximation by Polynomials in Orlicz Spaces[J].Approximation Theory and its Applications,1991,7(3):97-110.
  • 2Lorentz G G.Bernstein Polynomials[M].Toronto:University of Toronto Press,1953:31-32.
  • 3Ramazanov A R K.On Approximation by Polynomials and Rational Functions in Orlicz Spaces[J].Analysis Mathematica,1984,10(2):117-132.
  • 4CHANG Geng-zhe. Generalized Bernstein-Bdzier polynomial [J]. J. Comput. Math., 1983, 1(4): 322-327.
  • 5LIU Zhi-xin. Approximation of the Kantorovich-Bezier operators in Lp(O, 1) [J]. Northeastern Math. J., 1991,7(2): 199-205.
  • 6ZENG Xiao-ming. On the rate of convergence of the generalized Szgsz type operators for bounded variationfunctions [J]. J. Math. Anal. Appl., 1998, 226: 309-325.
  • 7ZENG Xiao-ming, PIRIOU On the rate of convergence of two Bernstein-Bdzier type operators for boundedvariation functions [J]. J. Approx. Theory, 1998, 95: 369-387.
  • 8DITZIAN Z, TOTIK V. Moduli of Smoothness Springer-Verlag [M]. New York, 1987.
  • 9GUO Shun-sheng, et al. Pointwise estimate for Szasz-type operators [J]. J. Approx. Theory, 1998, 94:160-171.
  • 10李文清.关于伯恩斯坦-康托洛维奇多项式的逼近度.厦门大学学报:自然科学版,1962,(2):119-129.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部