期刊文献+

新型氮唑类化合物的合成及抗真菌活性研究 被引量:2

Synthesis and antifungal activity of the novel azole compounds
下载PDF
导出
摘要 目的设计合成含有1,3,4-二唑侧链的新型氮唑类化合物,并研究其体外抗真菌活性。方法通过酰化、胺解、环合、亲核取代等多步反应合成了14个未见文献报道的目标化合物,其结构通过1 H NMR、MS确证,选择6种真菌为实验菌株,用微量液体稀释法检测目标化合物的体外抑菌活性。结果所有目标化合物对实验菌株均有一定的抑制活性,尤其对白念珠菌活性较好。化合物10d、10i、10l、10n对白念珠菌的MIC_(80)值为0.003 9μg/ml,是伊曲康唑(MIC_(80):0.062 5μg/ml)的16倍,是氟康唑(MIC_(80):0.25μg/ml)的64倍。结论 1,3,4-二唑侧链结构的引入对化合物的活性有影响,可能是侧链结构中二唑环与苯环能够与靶酶较好地结合,从而提高了化合物的活性。 Objective To design and synthesize novel triazole antifungal derivatives with 1,3,4-oxadiazole side chain for the study of antifungal activities. Methods Fourteen title compounds were synthesized via acylation, aminolysis reaction, cyelization, nucleophilic substitution, etc. All the compounds were characterized by 1 H NMR, MS spectra. The in vitro antifungal activities were evaluated against six human pathogenic fungi through the micro-broth dilution method. Results The title compounds exhibited strong antifungal activities against all the tested fungi, especially against Candida albicans. Compounds 10d, 10i, 101, and 10n were found to be the most effective, with a minimum inhibitory concentration (MICro) of 0. 003 9 μg/ml. They are 16-fold more potent than ICZ ( MIC80 0. 062 5 μg/ml) and 64-fold more potent than FCZ (MIC80 0.25 μg/ml). Conclusion The 1,3,4-oxadiazole side chain could affect the antifungal activities. That could be due to the proper incorporation between the 1,3,4-oxadiazole substituted phenyl ring with the target enzyme.
出处 《药学实践杂志》 CAS 2017年第1期22-25,59,共5页 Journal of Pharmaceutical Practice
基金 国家自然科学基金(20972188) 上海科委重点攻关课题(09dZ1976700)
关键词 1 3 4-噁二唑 合成 抗真菌活性 azole 1,3,4-oxadiazole synthesis antifungal activity
  • 相关文献

参考文献1

二级参考文献10

  • 1Vanden BH, Engelen M, Rochette F. Antifungal agents of use in animal health-chemical, biochemical and pharmacological aspects. J Vet Pharmacol Ther, 2003, 26:5~29.
  • 2Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14α-demethylase causes drug resistance through reduced affinity. J Antimicrob Agents Chemother, 2000, 44:63~67.
  • 3Prasad R, Kapoor K. Multidrug resistance in yeast Candida. J Int Rev Cytol, 2004, 242:215~248.
  • 4Niimi M, Niimi K, Takano Y, et al. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Agents Chemother, 2004, 54:999~1006.
  • 5Nakamura K, Niimi M, Niimi K, et al. Functional expression of Candida albicans drug efflux pump cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. J Antimicrob Agents Chemother , 2001 , 45:3366 ~3374.
  • 6Perea S, Lopez-Ribot JL, Kirkparick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans stains displaying high-lever fluconazole resistance isolated from human immunodeficiency virus-infected patients. J Antimicrob Agents Chemother, 2001, 45:2676~2684.
  • 7Hope WW, Tabernero L, Denning DW, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. J Antimicrob Agents Chemother, 2004, 48:4377~4386.
  • 8Denning DW, Ribaud P, Milpied N, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. J Clin Infect Dis, 2002, 34:563~571.
  • 9Walsh TJ, Pappas P, Winston DJ, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. J N Engl J Med, 2002, 346:225~234.
  • 10Boucher HW, Groll AH, Chiou CC, et al. Newer systemic antifungal agents : pharmacokinetics, safety and efficacy. J Drugs, 2004, 64:1997~2020.

共引文献5

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部