摘要
基于重庆市监测数据,运用协整与误差修正模型研究了输入变量平均温度、相对湿度、PM_(10)浓度、一氧化碳(CO)浓度、二氧化氮(NO2)浓度以及二氧化硫(SO_2)浓度对输出变量PM_(2.5)浓度的影响机理。结果表明:1)PM_(2.5)与空气中相对湿度、PM_(10)浓度和CO浓度呈正相关关系;2)当系统短期偏离长期均衡时,系统将以0.213的调节力度将非均衡状态拉回到均衡状态;3)建立的模型预测误差极小,并具有较强的泛化能力。
According to the monitored data of Chongqing,the paper used the method of co-integration and error correction model to study the influencing mechanism of the average temperature,the relative humidity,the density of PM_(10),CO,NO_2 and SO_2on the density of PM_(2.5). The results showed that the density of PM_(2.5)was positively correlated with the relative humidity,the density of PM_(10) and the density of CO,respectively. When the system was deviated from the long-run equilibrium at shortterm,the system would be adjusted to the equilibrium state in the intensity of 0. 213 from the non-equilibrium state. The predictions error of the model built in the present paper was very small and had a strong generalizability.
出处
《环境工程》
CAS
CSCD
北大核心
2017年第1期78-82,共5页
Environmental Engineering
基金
国家统计局统计科研重点项目(2014LZ25)