期刊文献+

利用社交媒体数据模拟城市空气质量趋势面 被引量:8

Modeling Urban Air Quality Trend Surface Using Social Media Data
原文传递
导出
摘要 近年来,随着城市的发展,空气污染日益严重。目前,我国城市空气质量监测主要依靠空气质量监测站,但监测站数量有限,并且空气质量在一个城市的不同区域会出现较大起伏,单一利用监测站不易发现城市所有位置的空气质量起伏变化。对此,利用带有地理位置信息的新浪微博数据,分析空气污染相关主题微博与空气质量监测站点空气质量指数(air quality index,AQI)数据的相关性,建立两者间的函数关联,提出了一种建立城市空气质量趋势面的方法。实验结果表明,该方法不仅能定性地表现出城市不同区域的相对空气质量,也可定量、细粒度地展示城市空气质量情况。 Air pollution is getting worse with the development of cities in recent years.Urban air quality is mainly monitored by air quality monitoring stations at present.However,the number of stations is limited and the air quality fluctuates in different urban areas.So it is unefficient to detect air quality's distribution in a city by air quality monitoring stations only.Based on Sina Weibo data with location information,we propose an urban air quality trend surface modeling method by analysing the correlation between air pollution related topic microblogs and air quality monitoring station AQI data.The study reveals that our method not only qualitatively shows the relative air quality in diffferent regions of the city,but also demonstrations the urban air quality in a quantitative and fine-grained way.The findings of this study evaluate the feasibility of using a new type of large-scale data source for research on air quality estimation of any location in a city,and are of great significance when reflecting air quality distribution and finding areas where are relatively air polluted.
作者 王艳东 荆彤 姜伟 王腾 付小康 WANG Yandong JING Tong JIANG Wei WANG Teng FU Xiaohang(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第1期14-20,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41271399) 测绘地理信息公益性行业科研专项经费(201512015) 高等学校博士学科点专项科研基金(20120141110036) 国家科技支撑计划(2012BAH35B03)~~
关键词 社交媒体 新浪微博 城市空气质量 趋势面 social media Sina Weibo urban air quality trend surface
  • 相关文献

参考文献3

二级参考文献18

  • 1AhaltSC.为什么需要数据科学[J].中国计算机学会通讯,2013,9(12):11-15.
  • 2大数据史记2013:盘点中国2013行业数据量[OL].http://www.36dsj.com/archives/6285,2013.
  • 3Zikopoupos P C,Eaton C, de Roos D, et al. Under- standing Big Data, Analytics for Enterprise Class Hadoop and Streaming Data [ OL]. http..//public. dhe. ibm. com/common/ssi/ecm/ en/im114296usen/ IML14296USEN. PDF, 2012.
  • 4Karel R. See Big Data Through a Different Lens [OL]. https : //www. informatica, corn/potential-at- work/information-leaders/article/see-big data. sht- ml,2013.
  • 5李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].2版.北京:科学出版社,2013.
  • 6Li Q Q, Zhang T, Yu Y. Using Cloud Computing to Process Intensive Floating Car Data for Urban Traffic Surveillance[J]. International Journal of Geographical Information Science, 2011, 25 (8) : 1 301-1 322.
  • 7Li D R, Cheng T. KDG Knowledge Discovery from GIS[C]. The Canadian Conference on GIS, Ottawa, Canada, 1994.
  • 8Wong P C,Thomas J. Visual Analytics[J]. IEEE Computer Graphics and Applications, 2004, 24 (5) : 20-21.
  • 9Kovalerchuk B, Schwing J. Visual and Spatial A- nalysis: Advances in Data Mining, Reasoning, and Problem Solving[M]. Netherlands:Springer, 2004.
  • 10CCF大数据专家委员会.2014年大数据发展趋势预测[J].中国计算机学会通讯,2014,10(1):32-36.

共引文献608

同被引文献102

引证文献8

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部