期刊文献+

一种路网拓扑约束下的增量型地图匹配算法 被引量:18

An Incremental Map-Matching Method Based on Road Network Topology
原文传递
导出
摘要 着眼于低频浮动车轨迹数据,对地图匹配问题进行了抽象,并分析了影响匹配结果的几何约束与拓扑约束。针对GPS采样的低频性和城市路网的复杂性,提出了一种路网拓扑约束下的增量型地图匹配算法(topology-constrained incremental matching algorithm,TIM)。选取北京市浮动车的GPS样例轨迹数据进行匹配,结果表明,该匹配算法在不同复杂程度的城市路网下均表现较好。 The emergence of big spatio-temporal data brings brand new perspectives as well as challenges for us to investigate and understand urban space.Due to existence of GPS position error,it is inevitable to adopt the map-matching methods to map the spatio-temporal trajectories onto geographic space.This research focuses on the low-sampling trajectories of floating cars in urban road networks by formalizing the map-matching process and exploring the influence of both the geometric and topology constraints on matching results.To solve the problem of matching low-sampling GPS data in the context of complex urban road networks,we proposea topology-constrained incremental matching algorithm(TIM).Utilizing a sample GPS trajectory of Beijing float car as an example,the TIM algorithm is verified to be efficient and accurate give various road network complexity.Our study is valuable for the pre-processing of massive spatio-temporal data,and has the potential to benefit trajectory data mining and related urban informatics research in the future.
作者 朱递 刘瑜 ZHUDi LIUYu(School of Earth and Space Sciences, Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第1期77-83,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41271386 41428102)~~
关键词 地图匹配 低频GPS轨迹 路网拓扑 增量 map-matching low-sampling GPS trajectory road network topology increment
  • 相关文献

参考文献1

二级参考文献17

共引文献30

同被引文献125

引证文献18

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部