期刊文献+

Single Neuron PID Control Based on Expert Experiences for Temperature Difference Control System of a Digester 被引量:3

Single Neuron PID Control Based on Expert Experiences for Temperature Difference Control System of a Digester
下载PDF
导出
摘要 Considering the temperature difference of displacement cooking characterized by severe non-linearity, large time delay, and real-time control, a cascade PID adaptive control strategy composed of a single neuron is proposed to ensure cooking temperature uniformity. The control strategy introduces expert experiences to adjust the single neuron gain K, while a single neuron PID self-learning and adaptive ability, as well as cascade advantage can be combined to realize the real-time and fast temperature difference control. In the Simulink, the s-function of this control strategy is used to carry out a dynamic simulation experiment with temperature difference characteristics and verify the robustness and response to model mismatch. Compared to conventional temperature difference-flow PID cascade control and single neuron PID cascade control, this control strategy has better robustness and stronger adaptability. The results of real-time control on the THJSK-1 experiment platform indicate this control strategy is feasible. Considering the temperature difference of displacement cooking characterized by severe non-linearity, large time delay, and real-time control, a cascade PID adaptive control strategy composed of a single neuron is proposed to ensure cooking temperature uniformity. The control strategy introduces expert experiences to adjust the single neuron gain K, while a single neuron PID self-learning and adaptive ability, as well as cascade advantage can be combined to realize the real-time and fast temperature difference control. In the Simulink, the s-function of this control strategy is used to carry out a dynamic simulation experiment with temperature difference characteristics and verify the robustness and response to model mismatch. Compared to conventional temperature difference-flow PID cascade control and single neuron PID cascade control, this control strategy has better robustness and stronger adaptability. The results of real-time control on the THJSK-1 experiment platform indicate this control strategy is feasible.
出处 《Paper And Biomaterials》 2017年第1期52-58,共7页 造纸与生物质材料(英文)
关键词 displacement cooking temperature difference expert experiences single neuron cascade PID displacement cooking temperature difference expert experiences single neuron cascade PID
  • 相关文献

参考文献8

二级参考文献52

共引文献42

同被引文献25

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部