期刊文献+

次弧连通锥-凸集值优化问题近似解的最优性条件

Optimality of approximate solutions in set-valued optimization involving subarcwise connected cone-convexity
下载PDF
导出
摘要 本文讨论相依上图导数形式下广义弧连通锥-凸集值优化近似解的最优性条件问题.首先,本文引入次弧连通锥-凸集值映射的概念,并举例说明次弧连通锥-凸性是弧连通锥-凸性的推广;其次,得到了次弧连通锥-凸集值映射的两个有用性质;最后,在次弧连通锥-凸性条件下,分别建立了集值优化问题强近似极小元和弱近似有效元的充分最优性条件. This note deals with the optimality conditions of approximate solutions in set-valued optimization problems involving generalized arcwise connected convexity in terms of the contingent epiderivative. Firstly, the concept of subarcwise connected cone-convex set-valued mapping is introduced. Then, the two roperties of subarcwise connected cone-convex set-valued mapping are derived. Finally, the sufficient optimality conditions are established for weak approximate efficient and strong approximate efficient elements respectively under the assumption of subarcwise connected cone-convexity.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期7-11,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11361001) 宁夏自然科学基金(NZ14101)
关键词 弧连通锥-凸集值映射 最优性条件 相依上图导数 近似解 Arcwise connected set-valued mapping Optimality condition Contingent epiderivative Approximate solution
  • 相关文献

参考文献2

二级参考文献19

  • 1丘京辉.CONE-DIRECTED CONTINGENT DERIVATIVES AND GENERALIZED PREINVEX SET-VALUED OPTIMIZATION[J].Acta Mathematica Scientia,2007,27(1):211-218. 被引量:10
  • 2Bednarczuk E M. Weak sharp effciency and growth condition for vector-valued functions with applica- tions[J]. Optimization, 2004, 53: 455.
  • 3Aubin J P, Frankowska H. Set-valued analysis[M]. Boston: Birkhajser, 1990.
  • 4Durea M, Strugariu R. Necessary optimality condi- tions for weaksharp minima in set-valued optimiza- tion [J]. Nonlinear Anal:Theory Methods and Ap- pl, 2010, 73: 2148.
  • 5Zhu S K, Li S J, Xue X W. Strong fermat rules for constrained set-valued optimization problems on Ba- naeh spaces [J]. Set-Valued Var Anal, 2012, 20: 637.
  • 6James V B, Sien D. Weak sharp minima revisited part I: Basic theory [J]. Control and Cybernetics, 2002, 31: 439.
  • 7Bienvenido J. Strict effciency in vector optimization[J]. J Math Anal Appl, 2002, 265: 264.
  • 8Marcin S. Weak sharp minima in multiobjective op- timization [J]. Control and Cybernetics, 2007, 36: 925.
  • 9Bednarczuk E. On weak sharp minima in vector op- timization with applications to parametric problems [J]. Control and Cybernetics, 2007, 36: 563.
  • 10Studniarski M, Doug E W. Weak sharp minima: characterization and sufficient conditions [J]. SIAM J on Control and Optim, 1999, 38: 219.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部