期刊文献+

非线性时变机载雷达微下击暴流目标回波建模与算法设计

Modeling and algorithm design of the nonlinear time-varying airborne radar microburst target
下载PDF
导出
摘要 为了有效分析微下击暴流产生机理以及在非对称风场条件下微下击暴流的风速估计和回波谱,利用网格划分法的基本原理,结合多普勒效应建立了微下击暴流目标回波数学模型,并提出了一种机载雷达微下击暴流信号的处理算法.在非对称风场情形下仿真分析了顺风、偏风、侧风以及逆风时微下击暴流的风速估计以及功率谱.仿真结果表明,在不同距离门上的顺风、逆风、侧风以及偏风的风速变化符合微下击暴流的特征,非对称风场下的微下击暴流雨回波三维功率谱分布与非对称风场中的径向速度分布一致. In order to analyze generating mechanism of and echo spectrum under asymmetric wind field. The microburst wind shear and wind speed estimation mathematical model of wind shear target echo is established by using mesh generation, combined with Doppler effect, the airborne radar wind shear signal processing algorithm is presented. The wind speed estimation and the rain echo power spectrum are simulated under following wind, partial wind, cross wind and against the wind. The simulation results showed that wind-speed alterations is suitable for the actual wind characteristic under following wind, partial wind, cross wind and against the wind in different range gates. Asymmetric three-dimensional wind shear off the wind rain echo power spectrum distribution with asymmetric wind field in the radial velocity distribution the three-dimensional rain echo power spectrum distribution of wind shear is consistent with the radial velocity distribution under asymmetric field wind.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期95-100,共6页 Journal of Sichuan University(Natural Science Edition)
基金 重庆市博士后研究人员科研项目特别资助(Xm2015029) 重庆市科委基础与前沿研究计划项目(cstc2014jcyjA40007) 重庆市教委科学技术研究项目(KJ1500926) 国家自然科学基金重大研究计划(91438104)
关键词 微下击暴流 网格划分 功率谱 多普勒效应 Microburst Mesh Generation Power Spectrum Doppler Effect
  • 相关文献

参考文献6

二级参考文献69

  • 1李风民.希尔伯特变换及其应用研究[J].中国无线电,2006(7):53-54. 被引量:6
  • 2李炳照,陶然,王越.线性正则变换域的Hilbert变换[J].兵工学报,2006,27(5):827-830. 被引量:5
  • 3寇明延, 赵然. 现代航空通信技术[M].北京: 国防工业出版社, 2011.
  • 4Haque J, Ertiark MC, Arslan H. Aeronautical ICI analysis and Doppler estimation[J]. IEEE Commun Lett, 2011, 15(9): 906.
  • 5Meng Q, Lu M, Sun B, et al. System performance analysis of low-altitude relay networks[C]// Pro- ceedings of IEEE International Conference on Intel- ligent Control and Information Processing (ICICIP). Beijing, China: IEEE, 2013.
  • 6Haas E. Aeronautical channel modeling[J]. IEEE Trans Vehicular Tech, 2002, 51(2): 254.
  • 7Meng Y S, Lee Y H. Measurements and character- izations of air-to-ground channel over sea surface at C-band with low airborne altitudes[J]. IEEE Trans Vehicular Tech, 2011, 60(4): 1943.
  • 8Daniel K, Putzke M, Dusza B, et al. Three dimen- sional channel characterization for low altitude aerial vehicles [C]// Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS). York, UK, 2010.
  • 9CHEN Q, YANG X, NI J, et al. A large frequency offset correction scheme for wideband low-altitude communication system[J]. J Comput Inform Syst, 2012, 8(24): 10439.
  • 10Alzaroug A B, A1-Fuhaidy B A, Salah M M, etal. Performance analysis of the downlink CP-WCDMA system with turbo code in frequency domain I J]. Wireless Pets Commun, 2014, 77(4): 3193.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部