期刊文献+

多传感器可变参数互补滤波算法设计 被引量:4

Design of Multi-sensor Complementary Filtering Algorithm with Variable Parameters
下载PDF
导出
摘要 针对互补滤波器在组合导航中无法适应载体运动状态变化和周围磁场干扰问题,设计一种多传感器可变参数互补滤波算法。首先,在频域上分析各传感器噪声,根据其频率互补性设计多传感器互补滤波器;其次,通过加速度计和电子罗盘输出监测载体运动状态和磁场环境,设定可变滤波器参数以降低上述变化引起的估计误差;最后,以FPGA为核心,MEMS陀螺仪、加速度计和电子罗盘构建组合导航系统验证算法。实验表明,与商业级姿态航向参考系(AHRS)测量值对比,该算法能够确保系统较高精度的输出,且有效降低载体运动状态变化和磁场干扰影响。 Aiming at the problem that the complementary fihering in the integrated navigation system could not adapt to the motion state change and the magnetic field disturbance, a multi-sensor complementary filtering algorithm with variable parameters is designed. Firstly, the sensor noise is analyzed in frequency domain, and the complementary filter is designed according to the spectral characteristics. After that, the motion state and magnetic feld are monitored through accelerometer and electronic compass, according which to set the filter parameters to decrease the estimation error. Finally, with FPGA as the core processor, an integrated navigation system of MEMS gyroscope, accelerometer and electronic compass is developed to verify the algorithm. The experimental results show that: Compared with the commercial AHRS, the algorithm can keep a higher system output accuracy, and reduce the influence of the motion state change and the magnetic field disturbance effectively.
作者 卢捡森 马龙 裴昕 黄超 周德新 苏志刚 LU Jian-sena MA Longa PEI Xina HUANG Chaoa ZHOU De-xinb SU Zhi-ganga(Civil Aviation University of China, a. Sino-European Institute of Aviation Engineerin b. College of Electronic Information and Automation, Tianjin 300300, Chin)
出处 《电光与控制》 北大核心 2017年第2期30-34,共5页 Electronics Optics & Control
基金 中央高校基本科研业务费中国民航大学专项资助项目(3122015Z003)
关键词 组合导航 多传感器 互补滤波 运动状态 磁场干扰 可变参数 FPGA integrated navigation multi-sensor complementary filtering motion state magnetic field disturbance variable parameter FPGA
  • 相关文献

参考文献7

二级参考文献89

  • 1周建军,王秀,张睿,刘刚,马伟,冯青春.农机车载GPS和DR组合导航系统定位方法![J].农业机械学报,2012,43(S1):262-265. 被引量:13
  • 2黄铫,张天骐,李越雷,刘燕丽.一种扩维无迹卡尔曼滤波[J].电子测量与仪器学报,2009,23(S1):56-60. 被引量:9
  • 3高为广,封欣,朱大为.基于神经网络构造的GPS/INS自适应组合导航算法[J].大地测量与地球动力学,2007,27(2):64-67. 被引量:14
  • 4Mook D J, Junkins J L. Minimum model error estimation for poorly modeled dynamic systems[J]. Journal of Guidance, Control, and Dynamics, 1988, 11(3) : 256 - 261.
  • 5LU P. Optimal predictive control of continuous nonlinear systems[J]. Int. J. Control, 1995,62(3) : 633-649.
  • 6Crassidis J L, Markley F L. Predictive filtering for nonlinear systems[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 566-572.
  • 7Gordon N, Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140(2):107-113.
  • 8Hammersley J M, Morton K W. Poor man's Monte Carlo[J]. J of the Royal Statistical Society B, 1954,16(1) : 23-38,
  • 9Handschin J E. Monte Carlo techniques for prediction and filtering of nonlinear stochastic processes[J]. Automatica, 1970, 6(3) : 555-563.
  • 10Gustafsson F, Ahlqvist S, Forssell U, Persson N. Sensor fusion for accurate computation of yaw rate and absolute velocity[C]// SAE 2001-01-1064. Detroit, 2001.

共引文献164

同被引文献34

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部