期刊文献+

新型多肽表位技术研究进展 被引量:1

Research Progress on Novel Peptide Epitopes Technology
下载PDF
导出
摘要 多肽表位作为抗原的重要组成成分,可以被宿主免疫系统B细胞产生的抗体(Ig)和T细胞受体(TCR)识别,从而诱导机体产生免疫保护作用。传统的研究方法如交叠肽合成等费时费力,极大地限制了多肽表位的研究。随着生物信息学、高通量测序、CRISPR/Cas9、质谱(MS)等技术出现以及TAP非依赖型蛋白加工机制的不断阐述,使表位的研究得到不断完善。作者介绍了最新的多肽表位研究方法,包括利用计算机对B细胞和T细胞表位的预测、基于MHC与抗原肽结构作用为基础的方法、结合高通量测序技术的表位筛选方法、结合新型基因编辑技术的表位筛选方法、TAP非依赖性T细胞表位的最新研究等,并对今后多肽表位研究的发展进行了展望。 As an important component of the antigen,peptide epitopes can be recognized by T cell receptor(TCR)and antibodies which induced protective immunity by the host immune system.Traditional research methods,such as overlapping peptide synthesis is long time-consuming which greatly limits the study of epitopes. With the development of bioinformatics,highthroughput sequencing,CRISPR/Cas9 technology,MS and other technologies and explaining the processing mechanism of TAP-dificient protein constantly,the research for epitopes is being perfect continually.In this article,some new methods to study epitopes were introduced,including computer prediction of B cell or T cell epitopes,identification of epitopes based on the structure and interaction of MHC and antigenic peptides,screening epitopes by means of high throughput sequencing,screening epitopes by means of newly genome editing,the up-to-date research in TAP-deficient T cell epitopes,etc.Finally,future prospect for research direction of peptides was further forecasted.
作者 韩勇 高花 翟晓鑫 高凤山 HAN Yong GAO Hua ZHAI Xiao-xin GAO Feng-shan(Laboratory of Moleculer Immunology, College of Life Science and Technology , Dalian University, Dalian 116622, China)
出处 《中国畜牧兽医》 CAS 北大核心 2017年第1期44-52,共9页 China Animal Husbandry & Veterinary Medicine
基金 国家自然科学基金项目:猪源病毒CTL多肽表位与SLA-Ⅰ结晶研究(31172304)
关键词 多肽 表位 筛选 CRISPR/Cas9技术 TAP非依赖性表位 peptide epitope screening CRISPR/Cas9 technology TAP-dificient epitopes
  • 相关文献

参考文献4

二级参考文献29

  • 1Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature, 1986; 322, 747-8.
  • 2Gao J, Kurgan L. Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol, 2014; 1184, 197-215.
  • 3Goodfellow I J, Warde-Farley D, Mirza M, et al. Maxout Networks. In International conference on machine learning, 2013.
  • 4Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res, 2010, 38, D854-62.
  • 5EI-Manzalawy Y, Dobbs D, Honavar V. Predictin8 linear B-cell epitopes using string kernels. J Mol Recognit, 2008; 21, 243-55.
  • 6Goodfellow LI, Warde-Farley D, Lamblin P, et al. Pylearn2: a machine learning research library, arXiv preprint, 2013; arXiv:1308.4214.
  • 75aha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006; 65, 40-8.
  • 8Chen J, Liu H, Yang J, et al. Prediction of linear B-cell epitopes using amino acid pair ant-igenicity scale. Amino Acids, 2007; 33, 423-8.
  • 9Lian Y, Ge M, Pan X. EPMLR: Sequence-based linear B-cell epitope prediction method using multiple linear regression. 8MC Bioinformatics, 2014; 15,414.
  • 105ingh H, Ansari HR, Raghava GP. Improved method for linear B-cell epitope prediction using antigen's primary sequence. PLoS One, 2013; 8, e62216.

共引文献21

同被引文献30

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部