期刊文献+

旋转和平移双推测的ICP配准加速算法

Accelerated ICP Registration Algorithm Based on Expectation of Both Rotation and Translation
下载PDF
导出
摘要 为了提高迭代最近点(Iterative Closest Point,ICP)的运算速度,在原始ICP及其加速算法(Accelerated ICP,AccICP)的基础上,提出旋转和平移配准参数双推测的加速算法。该算法通过对配准参数进行统一推测的AccICP进行分析,针对配准参数迭代求取过程中旋转和平移参数存在变化不同步的情况,提出了对该俩参数进行独立推测,只要任一参数迭代变化符合要求即可进行推测。实验结果表明,该算法比原始ICP具有较好的加速效果;与AccICP算法相比,做到了精准推测,减少了不必要的统一推测。 To increase the calculation speed of Iterative Closest Point(ICP) Algorithm, a new accelerated ICP is proposed based on the original ICP and its accelerated ICP(Acc ICP). Both rotation and translation registration parameters are expected in the algorithm. The whole registration parameters are expected in the Acc ICP, and the changes of both rotation and translation registration parameters may not be synchronized during the process of iterative calculation. Both parameters are expected respectively in the new proposed method, and it can do expectation independently if one parameter’s change meets the requirement. The experimental results show that the proposed algorithm can accelerate calculation, compared with the original ICP. Compared with Acc ICP, it does accurate expectation, and avoids unnecessary unified expectation.
出处 《安徽电子信息职业技术学院学报》 2016年第5期6-11,共6页 Journal of Anhui Vocational College of Electronics & Information Technology
基金 国家自然科学基金项目(No.61271380) 广东省自然科学基金项目(No.2014A030307049)
关键词 旋转和平移双推测 迭代最近点算法 点云配准 加速算法 expectation of both rotation and translation Iterative Closest Point point cloud registration accelerated algorithm
  • 相关文献

参考文献2

二级参考文献18

  • 1胡少兴,查红彬,张爱武.大型古文物真三维数字化方法[J].系统仿真学报,2006,18(4):951-954. 被引量:58
  • 2BESL P, MCKAY N. A Method for Registration of 3D Shapes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992(2) :239-256.
  • 3LORUSSO A, EGGERT D, FISHER R. A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations [C] //Proceedings of the 4th British Machine Vision Conference (BMVC ' 95) , Birmingham : [ s. n. ] , 1995 : 237 -246.
  • 4ARUN K S, HUANG T S, BLOSTEIN S D. Least Squares Fitting of Two 3-d Point Sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987 (5): 698 -700.
  • 5GREENSPAN M, GODIN G. A Nearest Neighbor Method for Efficient ICP [C]//Proceedings of the Third International Conference on 3D Digital Imaging and Modeling. Quebec City: [ s. n.], 2001:161-168.
  • 6龚辉,江刚武,姜挺.基于单位四元数的绝对定向直接解法[J].测绘通报,2007(9):10-13. 被引量:9
  • 7FRANASZEK M, CHEOK G S,WITZGALL C. Fast Automatic Registration of Range Images from 3D Imaging Systems Using Sphere Targets [ J ]. Automation in Construction, 2009,18 (3) : 265-274.
  • 8JIANG J, CHENG J , CHEN X L. Registration for 3-D Point Cloud Using Angular-invariant Feature [ J ]. Neurocomputing, 2009, 72(16-18): 3839-3844.
  • 9BESL P J. A Method for Registration of 3D Shapes [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 ( 2 ) :239-256.
  • 10CHEN Y, MEDIONI G. Object Modelling by Registration of Multiple Range Images [J]. Image and Vision Compu- ting, 1992, 10(3) : 2724-2729.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部