期刊文献+

一款发动机油气分离器的结构参数优化 被引量:2

Structural Parameters Optimization of an Engine Oil-Gas Separator
下载PDF
导出
摘要 为提高一款发动机用多孔过滤型油气分离器的分离效率,采用计算流体动力学(Computational Fluid Dynamics,CFD)数值计算方法对原模型件内气液两相的流动特性与分离特性进行分析。结果表明,该模型件内的最大速度梯度和最大压力梯度所在区域均在多孔板上通孔和泡沫型多孔介质滤材的流通结合部。采用正交试验法对该油气分离器的多孔板与泡沫型多孔介质滤材的关键结构参数进行优化研究,获得了主要结构参数对气液两相的流动和分离效率指标影响的权重顺序,确定了该多孔过滤型油气分离器的最优结构组合,并通过试验进一步验证了该最优结构高效油气分离器的性能。 In order to improve the separation efficiency of a porous-filter oil-gas separator for an engine, the flow and separation characteristics of the gas-liquid two-phase flow in the original separator were analyzed by computational fluid dynamics (CFD). The results show that the maximum velocity gradient and the maximum pressure gradient are both generated at the flow connections of through holes of the perforated plate and the foam porous media. With the orthogonal experimental method, the key structural parameters on the perfbrated plate and the foam porous media of the oil-gas separator were optimized. Therefore the weight order of the influence of the main structural parameters on the gas-liquid two-phase flow and separation efficiency index is obtained. The optimal structure of the porous-filter oil-gas separator is determined. And finally, the simulation results of the optimal structure are experimentally validated.
作者 刘轻轻 唐志国 马鹏程 闵小滕 LIU Qingqing TANG Zhiguo MA Pengcheng MIN Xiaoteng(School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, Chin)
出处 《汽车工程学报》 2017年第1期22-29,共8页 Chinese Journal of Automotive Engineering
基金 国家科技支撑计划(2014BAG06B02) 合肥市自主创新政策项目(KX201506230108)
关键词 油气分离器 多孔介质 压差 分离效率 参数优化 oil-gas separator porous medium pressure drop separation efficiency parameter optimization
  • 相关文献

参考文献7

二级参考文献50

  • 1李奎.大型天然气过滤器的现状与改进措施[J].石油矿场机械,2004,33(B08):124-126. 被引量:15
  • 2郭刚.西气东输管线天然气压缩机组的运行管理探讨[J].燃气轮机技术,2006,19(3):58-61. 被引量:10
  • 3梁彤翔,孙文珍,王立铎,田民波,王英华,李恒德.表面张力与丝网印刷精度[J].科学通报,1996,41(18):1721-1725. 被引量:2
  • 4白敏丽,薛莹莹,吕继组,牛玲.隔热材料导热系数的数值模拟预测[J].热科学与技术,2007,6(2):136-140. 被引量:9
  • 5Manufacture B J. Characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.
  • 6Howell J R, Hall M J, Ellzey J L. Combustion of hydrocarbon fuels within porous inert media[J]. Progress in Energy and Combustion Science, 1996, 22(2): 121-145.
  • 7Zhao C Y, Kim T, Lu T J, et al. Modeling on thermal transport in cellular metal foams[C]//AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St. Louis, Missouri, 2002.
  • 8Kuznetsov A V, Xiong M, Nield D A. Thermally developing forced convection in a porous medium.. Circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation Effects [J]. Transport in Porous Media, 2003, 53(3): 331-345.
  • 9Wen T, Tian J, Lu T J, et al. Forced convection in metallic honeycomb structures[J]. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3313-3324.
  • 10Coquard R, Rochais D, Baillis D. Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures[J]. Fire Technology, 2010, 46(1): 1-34.

共引文献109

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部