摘要
通过Bernstein多项式的基函数,引进一类Stancu型算子序列,并借助于连续模研究该算子序列的一些逼近性质,得到算子列的一个Korovkin型收敛定理和收敛速度的一些估计。
In this paper, a kind of Stancu type operators is introduced through the base functions of the Bernstein polynomials. By means of the modulus of continuity, some approximate properties of the operators are studied. A convergence theorem of Korovkin type is established. Some estimations for the rate of convergence of the operators are obtained.
出处
《武夷学院学报》
2016年第12期63-65,共3页
Journal of Wuyi University
基金
国家自然科学基金(61572020)
福建省自然科学基金(2014J01021)
关键词
Stancu型算子列
K-泛函
光滑模
逼近性质
stancu type operators
K-functional
smoothness modulus
approximation properties