期刊文献+

无线传感器网络定位技术及典型系统 被引量:10

Positioning technology and typical systems for wireless sensor networks
下载PDF
导出
摘要 无线传感器网络被评为是改变二十一世纪、改变未来世界的十大新兴技术之一。无线传感器网络节点能够实现自身定位是获知监测地点信息的前提,同时也是实现目标跟踪和移动目标定位的基础。本文阐述了当前的节点定位基本原理,并整理了几种典型的无线传感器网络定位系统和算法,分析了其优缺点,并指出了当前定位算法存在的共性问题。 Wireless sensor networks have been rated as one of the top ten emerging technologies,which would change the 21 st century and the future world,and have an extensive foreground of application. In which positioning technology is one of the key technologies in the development and applications of WSNs.That WSNs' node can be positioned itself,is the premise of the site information learned monitoring.Therefore,node localization algorithms are a hot topic of wireless sensor networks. A brief introduction of some typical wireless sensor networks positioning systems and algorithms is presented. The advantages,disadvantages and common problems are analyzed.
出处 《信息技术》 2017年第1期17-21,共5页 Information Technology
基金 国家自然科学基金(61174190) 山东省自然科学基金(ZR2014FM002) 中国博士后科学基金特别资助(2015T80717)
关键词 无线传感器网络 节点定位 性能评价 WSN(Wireless Sensor Network) node localization performance evaluation
  • 相关文献

参考文献2

二级参考文献27

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2Doucet A.On sequential simulation-based methods for Bayesian filtering[R].Department of Engineering,University of Cambridge,1998.
  • 3Fox D.Adapting the Sample Size in Particle Filters through KLD-Sampling[J].Int'l J.Robotics Research,2003,22(12):985-1003.
  • 4Thn S,Fox D,Burgard W.Monte carlo localization with mixture proposal distribution[C] ∥Proc.National Conference on Artificial Intelligence(AAAI).2000:859-865.
  • 5Gutmann J S.Markov-kalman localization for mobile robots[C] ∥Proc.Int'l Conf.Pattern Recognition(ICPR02).Canada.2002:601-604.
  • 6Pitt M,Shephard N.Filtering via simulation:auxiliary particle filters[J].Journal of the American statistical association,1999,94(446):590-599.
  • 7Shen C H,van den H A,Dick A,et al.Enhanced importance sampling:unscented auxiliary particle filtering for visual trac-king[C] ∥Proc.Australian Conference on Artificial Intelligence.Cairns,Australia,2004:180-191.
  • 8Kose H,Akin H L.The Reverse Monte Carlo localization algorithm[J].Robotics and Autonomous Systems,2007,55(6):480-489.
  • 9Simmons R,Koenig S.Probabilistic Robot Navigation in Partially Observable Environments[C] ∥Proc.Int'l Joint Conf.Artificial Intelligence.1995:1080-1087.
  • 10Dellaert F,Fox D,Burgard W,et al.Monte Carlo Localization for Mobile Robots[C] ∥Proc.Int'l Conf.Robotics and Automation.1999:1322-1328.

共引文献24

同被引文献75

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部