期刊文献+

基于各向异性图像多尺度几何变换的压缩感知去噪算法 被引量:4

Denoising algorithm for compressed sensing based on anisotropic multiscale geometric transformation
下载PDF
导出
摘要 从压缩感知的稀疏表示出发,借鉴离散剪切滤波器设计的原理,构造了一种新型的紧框架下的各向异性的图像多尺度几何变换对图像作最优的稀疏表示;采用具有局部随机特性的结构化随机矩阵作为观测矩阵抽样原始图像,结合前述稀疏表示,并在重构过程中采用改进的分割增广拉格朗日收缩阈值法作为重构算法。仿真实验结果表明所建立的压缩感知图像去噪重构算法能够从少量受噪声污染的观测值中重构出原始图像,且在有效消除噪声的同时更多地保留了图像的边缘和细节。 Starting from CS sparse representation,and drawing on the principles of discrete shearlet filter design,a new tight framework wavelet-based shearlet transform is constructed on anisotropic multi-scale image for optimal sparse representation. Using the random nature of having a local structured as a random matrix observation matrix sample the original image, combined with the aforementioned sparse representation,and the improved split augmented Lagrangian shrinkage threshold algorithm in the reconstruction process as the reconstruction algorithm. Simulation results show that CS denoising reconstruction algorithm can be reconstructed from the established observation that small amounts of data from noisy images,and at the same time effectively eliminate noise retain more image edges and details.
出处 《燕山大学学报》 CAS 北大核心 2016年第6期499-507,共9页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61201110)
关键词 压缩感知 多尺度几何变换 测量矩阵 离散剪切滤波器 compressed sensing multiscale geometric transformation measurement matrix discrete shearlet filter
  • 相关文献

参考文献1

二级参考文献18

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candes E J nd Romberg J T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Blumensath T and Davies M E.Iterative thresholding for sparse approximations[J].Journal of Fourier Analysis and Applications,2008,14(5):629-654.
  • 4Bregman L M.The method of successive projection for finding a common point of convex sets[J].Soviet Math,1965,6(3):688-692.
  • 5Chartrand R and Yin Wotao.Iteratively reweighted algorithms for compressive sensing[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,2008:3869-3872.
  • 6Chartrand R.Exact reconstruction of sparse signals via nonconvex minimization[J].IEEE Signal Processing Letters,2007,14(10):707-710.
  • 7Mohimani G H,Babaie-Zadeh M,and Jutten C.A fast sparse approach for overcomplete sparse decomposition based on smoothed norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
  • 8Needell D and Tropp J A.CoSaMP:Iiterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2008,26(3):301-321.
  • 9Needell D and Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334.
  • 10Baraniuk R G,Cevher Volkan,and Marco T D,et al..Model-Based compressive sensing[J].IEEE Transactions on Information Theory,2010,56(4):1982-2001.

共引文献13

同被引文献32

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部