期刊文献+

多元统计回归及地理加权回归方法在多尺度人口空间化研究中的应用 被引量:43

Multiple scale spatialization of demographic data with multi-factor linear regression and geographically weighted regression models
原文传递
导出
摘要 对统计型人口数据进行格网形式的空间化可更直观地展示人口的空间分布,但不同的人口空间化建模方法和不同的格网尺度在表达人口空间化结果方面存在差异。本文在人口特征分区的基础上,引入DMSP/OLS夜间灯光对城镇用地进行再分类,采用多元统计回归和地理加权回归方法(GWR),开展人口统计数据空间化多尺度模型研究,生成1 km、5 km和10 km等3个尺度的2010年安徽省人口空间数据,并对3个尺度下2个模型结果进行精度评价与比较。结果表明:人口空间数据精度不仅与建模所用方法关系密切,还受到建模格网尺度大小的影响。基于多元统计回归方法的模型估计人口数与实际人口的平均相对误差值随着尺度的增加而降低,而基于GWR方法获得的人口空间数据误差值随着尺度的增加而升高。整体来看,基于GWR方法的1 km研究尺度的人口空间数据平均相对误差最低(22.31%)。区域地形地貌条件与人口空间数据误差有较强的关联,地貌类型复杂的山区人口空间数据误差较大。 Population distribution data are essential for socioeconomic and environmental studies, such as population estimation, spread of disease, natural disaster relief, and environmental protection. Existing research has proved that spatialized population grid data can precisely delineate the spatial pattern of population distribution, while model selection and size of grids may influence the accuracy of population distribution modeling. It is therefore important to estimate population distribution using appropriate models and at a proper spatial scale. This study mainly focused on the spatialization modeling of Anhui Province county-level population census data in 2010 at three grid scales. Anhui Province was selected for the study due to its complex landforms and signifi- cant difference of population distribution within its area. Population regionalization was carried out as a prepro- cessing step: 78 counties in Anhui Province were divided into four groups. Combining with land-use data and nighttime light (DMSP/OLS), urban residential areas were reclassified to reflect regional differences. Based on the population regionalization, multi-factor linear regression (MFLR) and geographically weighted regression (GWR) models were employed to integrate the reclassified urban residential land-use data with the rural residen- tial land-use data. This study established three population spatial datasets at 1 kin, 5 kin, and 10 km gird scales. Comparing the two models' precision at each scale, the results show that the modeling and grid scale have much influence on the accuracy of the spatialization result, which increased with the grid scale by using the MFLR model and the highest accuracy was achieved in the 10 km grid datasets. For the GWR model, the accuracy de- creased as the grid scale increased, and the highest model accuracy was obtained at the 1 km scale. Overall, the GWR model had a higher accuracy (22.31%) than the MFLR model when taking into account the geographic lo- cation and local modeling. This study may provide a scientific basis for the production and application of population spatial data and provide a reference of spatialization for other types of statistical data in the future.
作者 王珂靖 蔡红艳 杨小唤 WANG Kejing CAI Hongyan YANG Xiaohuan(State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China Zhejiang Academy of Surveying & Mapping, Hangzhou 310012, China)
出处 《地理科学进展》 CSCD 北大核心 2016年第12期1494-1505,共12页 Progress in Geography
基金 国家自然科学基金项目(41271173 41301155) 国家科技支撑计划项目(2012BAI32B06)~~
关键词 人口分布 空间化 多尺度 多元统计回归 地理加权回归法 安徽省 population distribution spatialization multi-scales multi-factor linear regression Geographically Weighted Regression (GWR) Anhui Province
  • 相关文献

参考文献19

二级参考文献309

共引文献1043

同被引文献625

引证文献43

二级引证文献321

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部