期刊文献+

基于信任网络的个性化推荐算法 被引量:1

Personalized recommendation algorithm based on trust network
原文传递
导出
摘要 以社交网络为平台的个性化推荐技术[1]已经得到了广泛的研究,但推荐系统仍然面临着若干问题,即数据稀疏性,用户冷启动等。文章提出了一种融合了信任网络的个性化推荐算法,在用信任网络信息进行推荐时,首先用余弦相似度的方法计算用户的相似度,通过相似度矩阵来对主题进行预测打分;然后计算用户与用户间的信任度;最后利用信任网络个性化推荐策略得到最优推荐结果推荐给用户。实验结果表明,提出的算法与传统的推荐算法相比,在准确率和召回率方面具有显著的提升。 The personalized recommendation technology based on social network has been extensively studied.However, several problems have still remained to be tackled in this area of technology,for example,data sparsity problem, cold-start problem and so on.In this paper,the author proposed a personalized recommendation algorithm combing trust network.Firstly,we used cosine similarity method to calculate the similarity of users,When recommending the use of trust network information; Secondly,we calculated trust metric between pairs of users; Finally,using the personalized recommendation strategy based on the trust network to get the best recommendation results to the users. The experimental results show that compared with the traditional recommendation algorithm, the proposed algorithm has a significant improvement in precision and recall rate.
出处 《电子技术(上海)》 2016年第12期65-67,共3页 Electronic Technology
关键词 信任网络 个性化推荐算法 冷启动 信任度 相似度 trust network personalized recommendation algorithm cold-start problem trust metric similarity
  • 相关文献

参考文献4

二级参考文献65

  • 1Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handboo[M]. Berlin: Springer, 2011:145-186.
  • 2Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proe of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008 : 426-434 Mobasher B, Burke R, Sandvig J. Model-based collaborative filtering as a defense against profile injection.
  • 3attacks [C] // Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2006:1388-1393.
  • 4Sandvig J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining [C] //Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:105-112.
  • 5Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering [C]//Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:49-56.
  • 6Pitsilis G, Marshall L. A model of trust derivation from evidence for use in recommendation systems, CS-TR-874 [R]. Newcastle, UK: University of Newcastle Upon Tyne, 2004.
  • 7Pitsilis G, Marshall L. Modeling trust for recommender systems using similarity metrics [C] //Proc of IFIPTM 2008. Berlin: Springer, 20081 103-118.
  • 8O'Donovan J, Smyth B. Trust in recommender systems [C]//Proe of the 10th lnt Conf on Intelligent User Interfaces. New York: ACM, 2005:167-174.
  • 9Kwon K, Cho J, Park Y. Multidimensional credibility model for neighbor selection in collaborative recommendation [J].Expert Systems with Applications, 2009, 36(3) :7114-7122.
  • 10Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation Proc of the 15th ACM SIGKDD Int Conf on Know Discovery and Data Mining. New York= ACM, 2009 406 II ledge 397-.

共引文献239

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部