期刊文献+

Performance analyses of OFDM AF relaying system in the presence of phase noise with APS and IPS

Performance analyses of OFDM AF relaying system in the presence of phase noise with APS and IPS
原文传递
导出
摘要 This article investigates the significant performances of orthogonal frequency division multiplexing (OFDM)-based dual-hop system in the presence of phase noise (PN). A scenario with Rayleigh fading statistics on both hops is assumed. Amplification factor for this amplify-and-forward (AF) relay networks system is divided into two conditions, average power scaling (APS) and instantaneous power scaling (IPS). Before deriving signal-to-noise ratios (SNR) under APS and IPS, the Gaussianity of intercarrier interference (ICI) is proved firstly. The accurate closed-form expressions of end-to-end SNR cumulative distribution functions (CDF) and probability density functions (PDF) for both cases are obtained later. With the help of moment generating functions (MGF), we have closed-form asymptotic expressions of bit error rate (BER), which show that the BER of system in the presence of PN cannot exceed a fixed level even when SNR in high regime. Finally, simulations verify accuracy of the results. Conclusion analysis will provide a useful help in future application of the system. This article investigates the significant performances of orthogonal frequency division multiplexing (OFDM)-based dual-hop system in the presence of phase noise (PN). A scenario with Rayleigh fading statistics on both hops is assumed. Amplification factor for this amplify-and-forward (AF) relay networks system is divided into two conditions, average power scaling (APS) and instantaneous power scaling (IPS). Before deriving signal-to-noise ratios (SNR) under APS and IPS, the Gaussianity of intercarrier interference (ICI) is proved firstly. The accurate closed-form expressions of end-to-end SNR cumulative distribution functions (CDF) and probability density functions (PDF) for both cases are obtained later. With the help of moment generating functions (MGF), we have closed-form asymptotic expressions of bit error rate (BER), which show that the BER of system in the presence of PN cannot exceed a fixed level even when SNR in high regime. Finally, simulations verify accuracy of the results. Conclusion analysis will provide a useful help in future application of the system.
机构地区 School of Information
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期1-9,共9页 中国邮电高校学报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities of China (TD2014-01)
关键词 OFDM-AF system phase noise average power scaling instantaneous power scaling OFDM-AF system, phase noise, average power scaling, instantaneous power scaling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部