期刊文献+

燃煤锅炉飞灰含碳量的BP神经网络模型 被引量:7

BP neural network modelof fly ash carbon content of coal-fired boiler
原文传递
导出
摘要 燃煤锅炉是复杂的多变量系统,其飞灰的含碳量形成机理复杂,不能用简单的数学公式估算。现场实炉测试这些数据具有工作量大,测试工况有限等缺点;燃煤锅炉运行参数及燃料特性等因素影响着飞灰的含碳量,其相互耦合,导致分析数据过程困难。神经网络建模将燃煤锅炉视为黑箱,应用该方法可以良好的描述其输入输出之间的黑箱特性,因此,人工神经网络应用广泛。利用燃煤锅炉试验数据,采用3层BP(back propagation)神经网络构建了锅炉飞灰的含碳量排放特性模型。通过锅炉的实测数据验证,该BP神经网络对飞灰含碳量相对预测误差在0.19%~0.50%,预测效果良好。测试结果表明,建立的神经网络预测模型可以准确逼近验证样本数据,也能够较好的逼近非验证样本数据,具有良好的泛化能力。 Coal-fired boiler is a complicated multi-variable system, and the formation mechanism of the carbon content of fly ash is complicated which cannot be estimated by simple mathematical formula. The disadvantages of furnace tests include big data workload, test conditions, etc. Besides, the carbon content of fly ash is affected by factors of the coal-fired boiler characteristics, which causes the difficulty in data analysis. The modeling method is that it treats the coal-fired boiler as a b black-box can be well described. By using coal-fired boiler model was established tO conduct the analysi validation of the measured data shows that the operati advanta on parameters and the fuel ge of the neural network lack box, thus the input and output of the test data, a three layer BP neural network s on the boiler fly ash carbon relative prediction error of the and 0.50 %. Further, the results show that the data of both the validation sample can be accurately predicted with assistance of this modelling method. emission features. The model is between 0.19% sample and the ordinary
作者 赵健 袁瀚 梅宁 ZHAO Jian YUAN Han MEI Ning(College of Engineering, Ocean university of China, Qingdao 266100, Chian)
出处 《热科学与技术》 CAS CSCD 北大核心 2016年第6期499-504,共6页 Journal of Thermal Science and Technology
基金 国家自然科学基金资助项目(51679225 51276174)
关键词 飞灰 燃煤锅炉 BP神经网络 fly ash coal-fired boiler BP neural network
  • 相关文献

参考文献4

二级参考文献31

共引文献149

同被引文献61

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部