期刊文献+

基于双树复小波的被动目标特征提取方法研究 被引量:1

Research on feature extraction for passive target based on dual-tree complex wavelet transform
下载PDF
导出
摘要 针对水下目标辐射噪声特征提取困难的问题,提出一种基于双树复小波变换的特征提取方法。首先,采用一种改进的小波阈值去噪方法去除水下目标辐射噪声信号中的噪声成分,该方法可以获得优于经典小波阈值去噪方法的结果;其次,在特征提取过程中,采用具有近似平移不变性的双树复小波变换,该方法能够克服信号时移带来的影响,得到稳定的目标特征向量。仿真试验和实航数据处理结果表明,本文方法提取的目标特征向量比使用离散小波变换提取的结果更稳定。 Due to the difficulty in feature extraction of underwater target radiated noise, a novel method based on dualtree complex wavelet transform(DT-CWT) is presented. Firstly, a modified method based on wavelet threshold de-noising is applied to reduce the noise from the signal and shows a better de-noising performance. Secondly, DT-CWT is introduced during feature extraction to calculate the feature vectors and the results are almost invariant even if the signal is shifted in time domain. The experiment results of simulation signal and the real underwater acoustic signal show that the method shown in this paper can get more stable feature vectors than discrete wavelet transform(DWT).
出处 《舰船科学技术》 北大核心 2016年第11期102-105,共4页 Ship Science and Technology
关键词 水下目标辐射噪声 小波降噪 双树复小波变换 特征提取 underwater target radiated noise wavelet de-noising dual-tree complex wavelet transform(DT-CWT) feature extraction
  • 相关文献

参考文献3

二级参考文献21

  • 1王俊,陈逢时.一种基于子波变换模极大值的信号重建方法[J].系统工程与电子技术,1996,18(3):7-15. 被引量:7
  • 2杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 3[2]Kingsbury N G.Image processing with complex wavelets[J].Phil.Trans.Roy.Soc.,1999,357(9):2543-2560.
  • 4[3]Kingsbury N G.Complex wavelets for shift invariant analysis and filtering of signals[J].Appl.Comp.Harmonic Anal.,2000,10(3):234-253.
  • 5[4]Kingsbury N G.The dual-tree complex wavelet transform:A new efficient tool for image restoration and enhancement[A].Proc.European Signal Processing Conf.[C].Rhodes,1998,319-322.
  • 6[5]Selesnick I W.Hilbert Transform Pairs of Wavelet Bases[J].IEEE Signal Processing Letters,2001,8(6):170-173.
  • 7[6]Ozkaramanli H,Yu R.On the phase condition and its solution for Hilbert transform pairs of wavelet bases[J].IEEE Trans.Signal Processing,2003,51(12):3293-3294.
  • 8[7]Yu R,Ozkaramanli H.Hilbert transform pairs of orthogonal wavelet bases:necessary and sufficient conditions[J].IEEE Trans.Signal Processing,2005,53(12):4723-4725.
  • 9[8]Selesnick I W.The design of approximate Hilbert transform pairs of wavelets bases[J].IEEE Trans.Signal Processing,2002,50(5):1144-1152.
  • 10[9]Yu R,Ozkaramanli H.Hilbert transform pairs of biorthogonal wavelet bases[J].IEEE Trans.Signal Processing,2006,54(6):2119-2125.

共引文献140

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部