期刊文献+

圆圈形运丝方式下温度影响MIG焊接头组织与断裂位置的规律

Effects of temperature on microstructure and fracture position of MIG welded joints using circled wire-feeding mode
下载PDF
导出
摘要 以圆圈形运丝为研究对象,利用数值模拟与试验相结合的方法研究了在MIG焊接过程中的温度场分布规律,讨论了温度峰值影响接头显微组织及断裂位置的规律.结果表明,对于圆圈形摆动工艺来说,由于熔池区内左侧的材料经历了周期性的二次加热,导致焊缝左侧及热影响区材料经历的温度峰值均高于右侧;摆动工艺的熔池区温度峰值高于不摆动工艺.与直线运丝相比较,摆动焊焊道内的等轴晶较大,而相邻焊道界面处的柱状晶较小.不同工艺下拉伸试样的断裂位置与焊缝区经历的热循环密切相关. Based on the circled wire-feeding mode,the temperature distribution during the MIG welding process was studied by numerical simulation and experimental investigation and the effect of the peak temperature on the microstructure and fracture position was discussed.Results showed that for the circled weaving welding process,the materials in the left side of the weld and thermo-affected zone experience higher peak temperature because the material in the left side of the molten pool underwent periodic reheating process.The temperature of the molten pool using the weaving welding process is higher than that of the linear welding process.Compared with linear wire-feeding mode,the equiaxed grains in the weld bead using the weaving welding process are larger,while the columnar grains at the interface of the adjacent weld bead are smaller.The fracture position of the tensile samples under these two processes is closely related to the heat cycle in the weld zone.
出处 《焊接学报》 EI CAS CSCD 北大核心 2016年第12期37-40,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51204111) 航空科学基金资助项目(2013ZE54021 2014ZE54021)
关键词 摆动焊 圆圈形运丝 温度 组织 weaving welding circled wire-feeding mode temperature microstructure
  • 相关文献

参考文献3

二级参考文献14

  • 1姬书得,方洪渊,刘雪松,孟庆国.基于串状热源的手工摆动焊应力场的数值模拟[J].焊接学报,2005,26(5):46-48. 被引量:12
  • 2胡军峰,杨建国,方洪渊,孟庆国.模拟焊接过程电弧摆动的热源模型[J].焊接学报,2005,26(6):57-59. 被引量:12
  • 3Fricke S, Keim E, Schmidt J. Numerical weld modeling-a method for calculating weld-induced residual stresses [ J ]. Nuclear Engineering and Design, 2001(206):139- 150.
  • 4Masao Toyoda, Masahito Mochizuki. A study on the prediction of thelaser weld shape with varying heat source equations and the thermaldistortion d a small structure in micro-joining[J]. Science and Techn-ology of Advanced Materials, 2004(5):255- 266.
  • 5Engelhard G, Habip L M, Pellkofer D, et al. Optimization of residual welding stresses in austenitie steel piping: prod testing and numerical sinulation of welding and post welding processes[J]. Nuclear Engineering and Design, 2000(198): 141 - 151.
  • 6John Goldak, Aditya Chakravarti, Malcolm Bibby. A new finite modelfor welding heat sources[J]. Metallurgical Transacfions B, 1984(15) :299-305.
  • 7Hu J F, Yang J G, Fang H Y, et al. Numerical simulation on temperature and stress fields of welding with wearing[J]. Science and Technology of Welding and Joining, 2006, 11(3) : 358-365.
  • 8John Goldak. A new finite model for welding heat source[J]. Metallurgul Transactions, 1984, 15B(2) : 299-300.
  • 9Abid M, Siddique M. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-llangge joint [ J ]. International Journal of Pressure Vessels and Piping, 2005,82:860-871.
  • 10Bilenko G A. Use of the program SYSWELD to analyze resid- ual stresses and strains after the welding of pressure vessels [J]. Metallurgist, 2012, 56(7-8): 565-569.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部