期刊文献+

酸性电解水爆破处理灵芝废段木效果研究 被引量:1

Effect of acid electrolyzed water explosion pretreatment on Ganoderma lucidum waste cut-log
下载PDF
导出
摘要 随着灵芝产业的不断壮大,每年因种植灵芝而产生大量废段木。该文在对废段木组成成分分析的基础上,研究了酸性电解水爆破处理废段木酶解工艺。废段木经酸性电解水预煮后高温瞬时爆破处理来破坏组织结构及纤维素结晶状态,以半纤维素去除率和纤维素损失率为考察指标,通过单因素试验及正交试验确定了反应的最优爆破条件为酸性电解水p H 1.8、爆破温度180℃、爆破时间60 s、预煮液固比为20:1(m L:g)。此最佳条件下半纤维素的去除率为94.20%,纤维素的溶出率为12.57%;经酸性电解水爆破处理后酶解率达86.40%,爆破残渣酶解效果表明利用强酸性电解水爆破处理灵芝废段木能够有效破坏纤维素结晶状态,利于纤维素酶酶解。 With the continuous development of Ganoderma lucidmn industry, a large number of waste cut-log was produced due to the cultivation of G. lucidum every year. Based on the analysis of waste cut-log components, the process of steam explosion pretreatment of waste cut-log with acid electrolysis water was studied. Taking hemicellulose removal rate and cellulose loss rate as evaluation index, the optimum reaction conditions were determined by single factor tests and orthogonal tests as follows: electrolysis water pH 1.8, explosion temperature 180℃, time 60 s, precook liq- uid-solid ratio 20:1 (ml:g). Under these conditions, the hemicellulose removal rate was 94.20%, cellulose leaching rate was 12.57%, and finally cellulose enzymolysis rate can reach 86.40%. The results showed that using strong acidic electrolyzed water explosion treatment of G. lucidum waste cut-log can effectively destruct the crystalline state of celulose, enhance the enzymatic hydrolysis.
出处 《中国酿造》 CAS 北大核心 2017年第1期79-82,共4页 China Brewing
基金 国家自然科学基金(21176247)
关键词 废段木 酸性电解水 蒸汽爆破 纤维素 半纤维素 waste cut-log acid electrolyzed water steam explosion cellulose hemicellulose
  • 相关文献

参考文献8

二级参考文献58

  • 1王愈,郝建雄,李里特.电生功能水和静电场处理对草莓采后生理的影响[J].农业工程学报,2006,22(3):184-187. 被引量:20
  • 2Zhang Y H P, Ding S Y, Melenz J R et al. Fractionafing Recalcitrant Lignocellulose at the modest Reaction Conditions [J]. Biotechnology and Bioengineering, 2007, 97: 214-223.
  • 3Englyst H N, Cummings H J. Simplified method for the measurement of total non-starch polysaccharides by gasliquid chromatography of constituent sugars as alditol acetates [J]. Analyst, 1984, 109:937-942.
  • 4Grant L A, Ostenson A M, Rayas-Duarte E Determination of Amylose and Arnylopectin of Wheat Starch Using HighPerformance Size-Exclusion Chromatography [J]. Cereal Chemistry, 2002, 79:771-773.
  • 5Zhong G Zhang Q C, Zou H F, et al. A Method for the Analysis of Low-Mass Molecules by MALDI-TOF Mass Spectrometry [J]. Analytical Chemistry, 2002, 74:1637-1641.
  • 6Conte P, Piccolo A. High pressure size exclusion chromatography (HPSEC) of humic substances: Molecular sizes, analytical parameters, and column performance [J]. Chemosphere, 1999, 38:517-528.
  • 7Cataldi T R I, Campa C. Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing [J]. Fresenius' Journal of Analytical Chemistry, 2000, 368(8): 739-758.
  • 8Zhang Y H P, Ding S Y, Melenz J R, et al. Fmctionating Recalcitrant Lignocellulose at the modest reaction Conditions [J]. Bioteclmology and Bioengineering, 2007, 197:214-223.
  • 9Kurakake M, Ide N, Komaki T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper [J]. Current Microbiology, 2007, 54(6): 424-428.
  • 10Millett M A, Effiand M J, Caulfield D F. In enzymatic conversion of biomass for fuels production [J]. Washington, Amer Chemical Soc, 1979, 25:292-324.

共引文献75

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部