期刊文献+

用于高频地波雷达阵列天线的孤立大目标分层校准算法

Hierarchical calibration algorithm using isolated large targets on an HFGW radar antenna array
原文传递
导出
摘要 高频地波雷达接收阵列不可避免地存在幅度和相位误差,这时天线方向图会产生歧变并使杂波对消算法失效。校准方法有采用辅助信源、建立阵列模型进行参数估计、利用噪声或杂波做为校准源等,缺点分别为成本高、实时性差、不能校准相位误差。针对以上问题,该文提出了孤立大目标分层校准算法。首先将阵列分成若干子阵,然后选取在空域和Doppler域都具有唯一性的大信噪比目标作为校准源,采用改进的噪声子空间拟合法或者相差校准法对各子阵的幅相误差进行校准,最后通过对各子阵误差矢量的融合得到统一的误差矢量,从而实现整个阵列的幅相校准。校准后阵列天线的幅度误差、相位误差和波束方向图旁瓣均显著减小。理论和实践都表明,孤立大目标分层校准算法比传统算法在实时性和精度方面都得到了大幅度的提高。 High frequency ground wave(HFGW) radar antenna arrays always have amplitude-phase errors; thus, when the antenna pattern is changed, the clutter cancellation algorithm must be recalibrated. The existing calibration methods include using an auxiliary source, building an array model for parameter estimation, and using the noise or clutter as a calibration source. However, the first method is expensive, the second has poor real-time performance, and the third cannot calibrate the phase error. This paper presents a hierarchical calibration algorithm using isolated large targets. The array is divided into several subarrays with a high SNR target which is unique in the spatial and Doppler domains as the calibration source.Then, the errors in each subarray are calibrated using the improved noise subspaee fitting method or the phase difference calibration method to get a uniform error vector by integrated each subarray error vector to calibrate the entire array's amplitude and phase errors. The calibration significantly reduces the amplitude error, phase error and the sidelohe of the antenna pattern. Both theoretical results and tests show that this calibration method greatly improves the accuracy and real-time response than the traditional algorithm.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期7-11,共5页 Journal of Tsinghua University(Science and Technology)
基金 海军专项基金资助项目(201202403001)
关键词 高频地波雷达 阵列天线 空域滤波器 幅相误差 high frequency ground wave (HFGW) radar arrayantenna spatial filter amplitude-phase error
  • 相关文献

参考文献1

二级参考文献10

  • 1Schmidt R O.Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Trans on Antenna and Propagation,1986,AP-34(3):276-280.
  • 2Roy R,Kailath T.ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques[J].IEEE Trans on ASSP,1986,37(7):984-995.
  • 3Weiss A J,Friedlander B.Effects of Modeling Errors on the Resolution Threshold of Music Algorithm[J].IEEE Trans on Signal Processing,1994,42(6):1519-1526.
  • 4Li F,Vaccaro R J.Sensitivity Analysis of DOA Estimation Algorithms[J].IEEE Trans on Aerospace and Electronic Systems,1992,28(3):708-717.
  • 5Friedlander B.A Sensitivity Analysis of the Music Algorithm[J].IEEE Trans on ASSP,1990,38(10):1740-1751.
  • 6Weiss A J,Friedlander B.Eigenstructure Methods for Direction Finding with Sensor Gain and Phase Uncertainties[J].Circuits Systems and Signal Processing,1990,9(3):271-300.
  • 7Friedlander B,Weiss A J.Performance of Direction-Finding Systems with Sensor Gain and Phase Uncertainties[J].Circuits System and Signal Processing,1990,9(3):271-300.
  • 8Hong J S.Genetic Approach to Bearing Estimation with Sensor Location Uncertainties[J].Electronics Letters,1994,29(23):2013-2014.
  • 9Kenneth E L,Fernandez D M.Simulation-Based Evaluations of HF Radar Ocean Current Algorithms[J].IEEE J Ocean Engr,2000,25(4):481-491.
  • 10金梁,殷勤业.时空DOA矩阵方法[J].电子学报,2000,28(6):8-12. 被引量:76

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部