期刊文献+

基于GMM托肯配比相似度校正得分的说话人识别 被引量:1

Score regulation based on GMM token ratio similarity for speaker recognition
原文传递
导出
摘要 该文提出一种基于Gauss混合模型(GMM)托肯配比相似度校正得分(GMM token ratio similarity based score regulation,GTRSR)的说话人识别方法。基于GMM-UBM(通用背景模型)识别框架,在自适应训练和测试阶段计算并保存自适应训练语句和测试语句在UBM上使特征帧得分最高的Gauss分量编号(GMM token)出现的比例(配比),然后在测试阶段计算测试语句和自适应训练语句的GMM托肯分布的配比的相似度GTRS,当GTRS小于某阈值时对测试得分乘以一个惩罚因子,将结果作为测试语句的最终得分。在MASC数据库上进行的实验表明,该方法能够使系统识别性能有一定的提升。 A GMM token ratio similarity based score regulation approach for speaker recognition is presented in this paper to judge the reliability of a test score based on the GMM token ratio similarity. In the GMM-UBM (universal background model) method, the GMM token which is the index of the UBM component giving the highest score is saved for each frame to form a vector called the GMM token ratio (GTR) of an utterance during the training and testing phases. In the test phase, the test utterance GTR is compared to the training utterance GTR to compute the similarity for a target speaker. When the similarity is less than a threshold, the original likelihood score is regulated by multiplying by a penalty factor as the final score of this test utterance. Tests on MASC show that this method improves the speaker recognition performance.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期28-32,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"重点基础研究项目(2013CB329504) 国家自然科学基金面上项目(60970080)
关键词 说话人识别 GMM托肯配比(GTR) 得分校正 speaker recognition GMM token ratio (GTR) scoreregulation
  • 相关文献

参考文献1

二级参考文献9

  • 1侯精一.现代汉语方言音库[M].上海:上海教育出版社,1994—1999.
  • 2Wuei-He Tsai,Wen-Whei Chang,Discrimination Training of Guassian Mixture Bigram Models with Application to Chinese Dialect Identification[J].Speech Communication,2002,36:317-326.
  • 3Y.K.Muthusamy,E.Barnard,and R.A.Cole,Reviewing Automatic Language Identification[J].IEEE Signal Processing Mag.,1994,11(4):33 -41.
  • 4M.A.Zissman,Comparison of Four Approaches to Automatic Language Identification of Telephone Speech,[J].IEEE Trans.Speech and Audio Processing,1996,4 (1):31 -34.
  • 5Alvin F.Martin,Mark A.Przybocki,NIST 2003 Language Recognition Evaluation[M].In:EuroSpeech[C],2003.
  • 6Torres-Carrasquillo,P.A.; Reynolds,D.A.; Deller,J.R.,Jr.,Language identification using Gaussian mixture model tokenization[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C],Orlando,Florida,May 2002,USA.
  • 7F.Jelinek,Statistical Methords for Speech Recognition[M].Cambridge,Massachusetts,MIT Press,1999.
  • 8周志华,曹存根.经网络及其应用[M],北京:清华大学出版社,2004年9月.
  • 9陈海伦.方言机器识别技术研究[J].中国人民公安大学学报(自然科学版),2000,6(1):33-38. 被引量:2

共引文献18

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部